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Bisectorial operators
Let H be a Hilbert space. We say that an operator T : D(T ) ⊂H →H
is bi-sectorial if

(i) T is closed and densely defined,
(ii) σ(T ) ⊂ Sω for some ω < π

2 where Sω = {ζ ∈ C : arg(±ζ) ≤ ω}, and
(iii) For all µ > ω, there exists Cµ > 0 such that

∥∥(1 + ξT )−1
∥∥ ≤ Cµ for

all ξ ∈ C \ {0} with |arg ξ| ≥ µ.

σ(T )σ(T )
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The Ψ-functional calculus

Let Soµ = {ζ ∈ C : ζ 6= 0, arg(±ζ) < ω} for ω < µ < π
2 and Ψ(Soµ) to be

the collection of holomorphic functions ψ : Soµ → C such that

|ψ(ζ)| ≤ C |ζ|s

1 + |ζ|2s

for some s > 0.

As in [McIntosh], we can define a bounded operator ψ(T ) by

ψ(T ) =
1

2πı

∮
γ
ψ(ζ)(ζ − T )−1 dζ

where γ =
{
±e±θ : ω < θ < µ

}
parametrised counterclockwise around Sω.
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H∞ bounded functional calculi

We say that T has a bounded Soµ functional calculus if

∃C > 0 such that ‖ψ(T )‖ ≤ C ‖ψ‖∞

for all ψ ∈ Ψ(Soµ).

In this case, we can define f(T ) for every bounded f : Soµ ∪ {0} → C
holomorphic on Soµ by

f(T ) = f(0)P0u+ lim
n→∞

ψn(T )u

where u ∈H , P0 : H → N (T ) is the bounded projection corresponding
to the decomposition H = N (T )⊕R(T ), and ψn → f uniformly on
compact subsets of Soµ.

See [McIntosh].
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Connection to Harmonic analysis

Theorem

A bisectorial operator T has a bounded H∞ functional calculus if and only
if ∫ ∞

0

∥∥tT (1 + t2T 2)−1u
∥∥2 dt

t
' ‖u‖2

for each u ∈ R(T ).

A version of this Theorem can be found as Theorem F in [ADM].
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Motivation

In [AKM], Axelsson, Keith and McIntosh consider H = L2(Rn,∧) such
that B ∈ L∞(Rn,L(∧)) with B invertible and strictly accretive.

They consider the perturbation of the Hodge-Dirac operator

DB = d+B−1d∗B.

They show D(
√
D2
B) = D(DB) and∥∥∥∥√D2

Bu

∥∥∥∥ ' ‖DBu‖ ' ‖du‖+ ‖dBu‖

for all u ∈ D(DB).

This is an extension of the Kato Square Root problem for Differential
forms on Rn.
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A more general problem
To prove this, [AKM] consider a more general setup.

(H1) The operator Γ : D(Γ)→H is closed, densely defined and nilpotent.

(H2) The operators B1, B2 ∈ L(H ) satisfy

Re 〈B1u, u〉 ≥ κ1 ‖u‖ whenever u ∈ R(Γ∗)

Re 〈B2u, u〉 ≥ κ2 ‖u‖ whenever u ∈ R(Γ)

where κ1, κ2 > 0 are constants.

(H3) The operators B1, B2 satisfy B1B2(R(Γ)) ⊂ N (Γ) and
B2B1(R(Γ∗)) ⊂ N (Γ∗).

Let

Γ∗B = B1Γ
∗B2, ΠB = Γ + Γ∗B and Π = Γ + Γ∗.
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Quadratic estimates and Kato

Given quadratic estimates and hence a bounded H∞ functional calculus,
they conclude

D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(Γ∗B)

with ∥∥∥∥√Π2
Bu

∥∥∥∥ ' ‖ΠBu‖ ' ‖Γu‖+ ‖Γ∗Bu‖ .

[AKM] give additional necessary conditions in order to prove quadratic
estimates for ΠB on H = L2(Rn,CN ).
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Our setting

We let (X , d) be a complete, connected metric space.

Let µ be a Borel measure on X satisfying the doubling condition:

∃C > 1 such that µ(B(x, 2r)) ≤ Cµ(B(x, r)

for all x ∈ X , r > 0.

We further assume that 0 < µ(B(x, r)) <∞ for all x ∈ X and r > 0.

Such a space exhibits “polynomial” growth in the sense

µ(B(x, tr)) ≤ Ctpµ(B(x, r))

for all t > 1 and where p = log2C.
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Additional hypothesis

To get the quadratic estimates, additional hypothesis are needed. The
following three hypothesis easily translate to our context.

(H4) Then set H = L2(X ,CN ; dµ).

(H5) Bi ∈ L∞(X ,L(CN )) for i = 1, 2.

(H7) For B an open ball,∫
B

Γu dµ = 0 and

∫
B

Γ∗v dµ = 0

for all u ∈ D(Γ) with spt u ⊂ B and for all v ∈ D(Γ∗) with
spt v ⊂ B.
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Upper gradients

One of the key components in the proof of [AKM] is to use cutoff
functions with good gradient bounds.

In our situation the lack of a differential structure means that we do not
have the luxury of a gradient and smooth functions.

Motivated by Cheeger in [Cheeger], we define:

Definition (Lipschitz pointwise constant)

For ξ : X → CN Lipschitz, define Lip ξ : X → R by

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

.

We let Lip ξ denote the Lipschitz constant ξ.
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The Leibniz hypothesis

(H6) For every bounded Lipschitz function ξ : X → C, multiplication by ξ
preserves D(Γ) and Mξ = [Γ, ξI] is a multiplication operator.
Furthermore, there exists a constant m > 0 such that
|Mξ(x)| ≤ m |Lip ξ(x)| for almost all x ∈ X .

In [AKM], ∇ξ was used in place of Lip ξ.
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The Poincaré hypothesis

Since we do not have a gradient, we replace the Coercivity hypothesis of
[AKM] as a Poincaré hypothesis in terms of the operator Π.

(H8) There exist a C > 0 and c > 0 such that for all balls B ⊂ X ,∫
B
|u(x)−mBu|2 dµ(x) ≤ C rad(B)2

∫
cB
|Πu(x)|2 dµ(x)

for all u ∈ D(Π) ∩R(Π).
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The main result

Theorem

If (Γ, B1, B2) satisfies the hypothesis (H1)-(H8), then∫ ∞
0

∥∥tΠB(1 + t2Π2
B)−1u

∥∥2 dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂ L2(X ,CN ).

Our work closely follows that of [Morris], where this Theorem is proved as
a local estimate on a complete Riemannian Manifold with at most
exponential volume growth.
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Christ’s dyadic cubes

Theorem (Michael Christ’s dyadic cubes [Christ])

There exists a collection of open subsets
{
Qkα ⊂ X : k ∈ Z, α ∈ Ik

}
with

each zkα ∈ Qkα, where Ik are index sets (possibly finite), and constants
δ ∈ (0, 1), a0 > 0, η > 0 and C1, C2 <∞ satisfying:

(i) For all k ∈ Z, µ(X \ ∪αQkα) = 0,

(ii) If l ≥ k, either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅,

(iii) For each (k, α) and each l < k there exists a unique β such that
Qkα ⊂ Qlβ,

(iv) diamQkα ≤ C1δ
k,

(v) B(zkα, a0δ
k) ⊂ Qkα,

(vi) For all k, α and for all t > 0,
µ
{
x ∈ Qkα : d(x,X \Qkα) ≤ tδk

}
≤ C2t

ηµ(Qkα).
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Important associated bounded operators

As in [AKM], for t 6= 0 we define the following bounded operators

RBt = (1 + ıtΠB)−1

PBt = (1 + t2Π2
B)−1

QBt = tΠB(1 + t2Π2
B)−1

ΘB
t = tΓ∗B(1 + t2Π2

B)−1.

The operators Rt, Pt, Qt are defined by setting B1, B2 = I.
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Dyadic averaging and the principal part

Let Qt = Qj when δj+1 < t ≤ δj , where Qj =
{
Qjα
}

.

We also need the dyadic averaging operator. Let Q ∈ Qt be the unique
Q 3 x and define

At(x) =
1

µ(Q)

∫
Q
u dµ.

Furthermore, we define the principal part of ΘB
t for w ∈ CN considered as

the function w̃(x) = w by

γt(x)w = (ΘB
t w̃)(x).
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The estimate break up

It is enough to prove that there exists a C > 0 such that∫ ∞
0

∥∥ΘB
t Ptu

∥∥2 dt
t
≤ C ‖u‖ .

As in [AKM], we break up the integral in the following way∫ ∞
0

∥∥ΘB
t Ptu

∥∥2 dt
t

.
∫ ∞
0

∥∥(ΘB
t − γtAt)Ptu

∥∥2 dt

t

+

∫ ∞
0
‖γtAt(Pt − I)u‖2 dt

t

+

∫ ∞
0

∫
X
|At(x)|2 |γt(x)|2 dµ(x)

dt

t
.
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Separation via Lipschitz functions

Lemma (Lipschitz separation lemma)

Let (X, d) be a metric space and suppose E,F ⊂ X satisfying
d(E,F ) > 0. Then, there exists a Lipschitz function η : X → [0, 1], a
Ẽ ⊃ E with d(Ẽ, F ) > 0 such that

η|E = 1, η|X\Ẽ = 0 and Lip η ≤ 4/d(E,F ).

This is a crucial tool to obtain cutoff functions with good upper-gradient
bounds.

Lashi Bandara (ANU) Quad. Est. on measure metric spaces February 10, 2011 19 / 26



Off diagonal estimates

Proposition (Off diagonal estimates)

Let Ut be either RBt for t ∈ R or PBt , Q
B
t ,Θ

B
t for t > 0. Then, for each

M ∈ N, there exists a constant CM > 0 (that depends only on M and
H1-H6) such that

‖Utu‖L2(E) ≤ CM
〈

dist(E,F )

t

〉−M
‖u‖H

where E,F ⊂ X are Borel sets and u ∈H with spt u ⊂ F .
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Principle and second part approximation

We prove ∫ ∞
0

∥∥(ΘB
t − γtAt)Ptu

∥∥2 dt

t
. ‖u‖

by application of the Off diagonal estimates and a Poincaré hypothesis
(H8).

The proof of ∫ ∞
0
‖γtAt(Pt − I)u‖2 dt

t
. ‖u‖

relies on the off diagonal estimates and the cancellation property (H7).
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Carleson estimate
We define the Carleson box over a cube Q ∈ Qj as RQ = Q × (0, δj ].

δj

Q

RQ

We say that a Borel measure ν on X × R+ is Carleson if there exists a
C > 0 such that ∫

RQ

|dν| ≤ Cµ(Q)

and define

‖ν‖C = sup
Q

1

ν(Q)

∫
RQ

|dν|
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Carleson estimate (cont.)

Proposition

For all u ∈H , we have∫∫
X×R+

|Atu(x)|2 dν(x, t) . ‖ν‖C ‖u‖
2

for every Carleson measure ν.

The proof of this relies on obtaining a Carelson Theorem in the doubling
setting.
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Carleson estimate (cont.)

Proposition (Carleson Measure)

For all Q ∈ Q, we have∫∫
RQ

|γt(x)|2 dµ(x)
dt

t
. µ(Q).

The tools we have constructed for the doubling setting allows us to repeat
the argument found in §5.3 in [AKM] with minimal alteration to prove this
Proposition.
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