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Geometry is the study of the shape of space.

Functional calculus is the ability to take functions of operators and
manipulate them as if they were functions.

Harmonic analysis is the art in which a mathematical object is
perceived as a signal and whose goal is to decompose this object,
often in some scale-invariant way, to simpler parts which are
mathematically more tractable.
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Fourier series
u ∈ L2(S1) =⇒ u(θ) =

∑∞
n=−∞ aneınθ, ∃an ∈ C.

Associated operator: ∆S1 , Laplacian on S1 or equivalently − d2

dθ2
with

periodic boundary conditions.

Eigenvalues:
{
λn = n2

}∞
n=0

.

Eigenfunctions:
{

eınθ, e−ınθ
}∞
n=0

.

∆S1u(θ) =
∑∞

n=−∞ ann
2eınθ.
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Symbol - appropriate function f :

f(∆S1)u(θ) :=

∞∑
n=−∞

f(n2)aneınθ.

Why?
∂tu(t, θ) = ∆S1u(t, θ)

lim
t→0

u(t, θ) = u0(θ)

Unique solution: u(t, θ) = e−t∆S1u0 = exp(−t∆S1)u0.
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Functional calculus

H Hilbert space, D non-negative self-adjoint operator on H ,
discrete spectrum spec(D) = {λi ≥ 0}.

Eigenfunctions {ui}. So u ∈H =⇒ u =
∑

n anun.

Quintessential example: (M, g) smooth compact Riemannian
manifold (without boundary), H = L2(M, g), D = ∆g = ∇∗,g∇.

id : H1(M, g) ↪→ L2(M, g) compact

dom(∆g) = H2(M, g) ⊂ H1(M, g)

}
=⇒ ∆g has discrete spectrum

Functional calculus for D on H :

f(D)u =
∑
n

f(λn)anun.
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Picture: u ∈H is a “signal”.
“Reconstruction” of signal: u =

∑
n anun.

ψ : R→ R measurable and ψ 6= 0 a.e. such that ∃α > 0,∃C > 0
satisfying

|ψ(x)| ≤ C
{
|x|α, |x|−α

}
x-a.e.

ψ(tD)u “band-pass filter” on u localised about frequency ∼ 1
t .

1

bb| |
1 2

3
2 λ

|

ψ = χ[1,2]

t = 3
2λ
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Assume ker(D) = 0 (i.e., λ1 > 0) and

‖χ[1,2](tD)u‖2 =
∑
n

a2
n‖χ[1,2](tD)un‖2

=
∑
n

a2
n‖χ[1,2](tλn)un‖2

=
∑
n

a2
n|χ[1,2](tλn)|2‖un‖2.

ˆ ∞
0
‖χ[1,2](tD)un‖2

dt

t
= ‖un‖2

ˆ ∞
0
|χ[1,2](tλn)|2 dt

t
.

ˆ ∞
0
|χ[1,2](tλn)|2 dt

t
=

ˆ ∞
0
|χ[1,2](s)|

ds

λns
· λn
s

=

ˆ ∞
0
|χ[1,2](s)|2

ds

s

=

ˆ 2

1

1

s
ds = log(2).
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Then,
ˆ ∞

0
‖χ[1,2](tD)u‖2 dt

t
=
∑
n

an log(2)‖un‖2 = log(2)‖u‖2.

Similarly, for ψ 6= 0 a.e. with |ψ(x)| ≤ C {|x|α, |x|−α} , x-a.e.:

ˆ ∞
0
‖ψ(tD)un‖2

dt

t
= ‖un‖2

ˆ ∞
0
|ψ(tλn)|2 dt

t
' ‖un‖2,

and ˆ ∞
0
‖ψ(tD)u‖2 dt

t
' ‖u‖2.

Reconstruction of signal in norm, up to a constant independent of the
signal.
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Beyond self-adjointness - nonlinear perturbation problems

Let x 7→ A(x) ∈ L∞(SymMat(n)), real self-adjoint at almost-every x
and a : R→ [0,∞] measurable.

LA,au := −a divA∇.

Question:

‖e−tLA1,a1 − e−tLA2,a2‖L2→L2 . ‖A1 −A2‖L∞ + ‖a1 − a2‖L∞?

Consider:

ΠB,b :=

(
0 −bdivB
∇ 0

)
,

x 7→ B(x), x 7→ b(x) C-valued, need not be symmetric.

Π2
B,b :=

(
−bdivB∇ 0

0 −∇bdivB

)
.
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The operator ΠB,b is ω-bisectorial, ω ∈ [0, π/2).

spec(ΠB)

b

|ζ|‖(ζ −ΠB)
−1‖ ≤ Cµ

S0
µ

Sω

ω
µ

(i) ΠB,b is closed,
(ii) spec(ΠB,b) ⊂ Sω,
(iii) ∀µ ∈ (ω, π/2), ∃Cµ > 0 s.t. ∀ζ ∈ C \ Soµ:

|ζ|‖(ζ −ΠB,b)
−1‖ ≤ Cµ.
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For all holomorphic ψ on Soµ satisfying: ∃α > 0,∃C > 0
|ψ(ζ)| ≤ C max {|ζ|α, |ζ|−α} ,

ψ(ΠB,b)u :=
1

2πı

˛
γ
ψ(ζ)(ζ −ΠB,b)

−1u dζ.

Assume: ∃C > 0 such that ‖ψ(ΠB,b)‖L2→L2 ≤ C‖ψ‖∞.
f(ΠB,b) defined for f : Sµ → C bounded, f |Soµ holomorphic.

(B′, b′) 7→ f(ΠB′,b′) holomorphic (in a small neighbourhood of (B, b))
and ‖f(ΠB,b)− f(ΠB′,b′)‖ . ‖B −B′‖L∞ + ‖b− b′‖L∞ ,

for (B′, b′) sufficiently L∞ close to (B, b).

‖(e−tLA1,a1 − e−tLA2,a2 )u‖ =

∥∥∥∥(e
−tΠ2

B1,b1 − e
−tΠ2

B2,b2

)(u
0

)∥∥∥∥
. ‖A1 −A2‖∞ + ‖a1 − a2‖∞.

First-order factorisation of the Kato square root problem by Axelsson
(Rosén)-Keith-McIntosh.
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Theorem (McIntosh 1986)

Let T be an ω-bisectorial operator, ω ∈ [0, π/2), on a Hilbert space
H . Then, H = ker(T )⊕ ran(T ) and for µ ∈ (ω, π/2), the following
are equivalent:

• ∃C > 0 such that ‖ψ(T )‖H→H ≤ C‖ψ‖∞, ∀ψ ∈ Ψ(Soµ).

• ∃ψ ∈ Ψ(Soµ), not identically zero on either sector, such that

‖u‖2ψ,T :=

ˆ ∞
0
‖ψ(tT )u‖2 dt

t
' ‖u‖2, ∀u ∈ ran(T ). (Qest)

• ∀ψ ∈ Ψ(Soµ) not identically zero on either sector, (Qest) holds.

Nomenclature: say T has a H∞ functional calculus.
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Picture: ψ(tT ) band-pass filter for the spectrum with real part 1
t .

Geometric interpretation: ‖u‖ψ,T new but comparable norm (shape)

on ran(T ).

Quadratic estimates (Qest) in PDE have connections to the so-called
square function estimates.

Can be computed via real-variable harmonic analysis methods, à la
Calderón-Zygmund.

McIntosh convergence lemma: Given f : Sµ → C bounded and f |Soµ
holomorphic, there exists fn ∈ Ψ(Soµ) such that {fn(T )} is Cauchy.

H∞ functional calculus:

f(T )u := f(0)P
ker(T ),ran(T )

u+ lim
n→∞

fn(T )u.
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Back to ‖ψ(ΠB,b)‖L2→L2 . ‖ψ‖∞.

Proved by Axelsson (Rosén)-Keith-McIntosh (for coefficients also
bounded below) in 2005 by showing

ˆ ∞
0

∥∥∥∥∥ tΠB,b

1 + t2Π2
B,b

u

∥∥∥∥∥
2
dt

t
' ‖u‖2, ∀u ∈ ran(ΠB,b).

Corresponds to ψ ∈ Ψ(Soµ) given by:

ψ(ζ) =
ζ

1 + ζ2
.

Proof involves dyadic structures, local T (b) theorems, etc.

Original Kato square root problem were similar in their estimates,
proved by Auscher-Hofmann-Lacey-McIntosh-Tchamitchian in 2002.
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Geometry!

(M, g) smooth, complete Riemannian manifold.

Laplacian with respect to g:

∆g := −divg∇, divg := −∇∗,g

Let h be another metric with C ≥ 1 satisfying:

C−1|u|g(x) ≤ |u|h(x) ≤ C|u|g(x), ∀u ∈ TxM.

∃A ∈ C∞ ∩ L∞(Sym(T∗M⊗ TM)) such that

hx(u, v) = gx(A(x)u, v), ∀u, v ∈ TxM
dµh(x) = θ(x) dµg(x), θ(x) :=

√
detA(x).

Then, ∆h = −θ−1 divg Aθ∇.
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ΠB has H∞ functional calculus =⇒

‖e−t∆g − e−t∆h‖ . ‖g − h‖L∞

∀h metrics sufficiently L∞-close to g.

• Axelsson (Rosén)-Keith-McIntosh 2005: M compact, g smooth.

• Morris 2012: M⊂ Rn+k, smooth Euclidean submanifold,
|II| <∞.

• Bandara-McIntosh 2016: (M, g) complete, smooth, |Ric|g <∞,
inj(M, g) ≥ κ, ∃κ > 0.

• Bandara 2017: M compact, g “rough” (non-smooth, measurable
coefficient).

A Also: application to regularity properties of a geometric flow
“tangential” in a suitably weak sense to the Ricci flow.
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Bär-Bandara 2018: M manifold with compact boundary Σ := ∂M.
E,F →M vector bundles, D : C∞(E)→ C∞(F ) first-order elliptic
differential operator.

A an “adapted” operator to the boundary. Ellipticity of D =⇒ A
ω-bisectorial (up to the addition of a lower order term).

u 7→ u|Σ extends to a bounded surjection dom(Dmax)→ Ȟ(A),

Ȟ(A) := χ−(A)H
1
2 (EΣ)⊕ χ+(A)H−

1
2 (EΣ).

Boundary conditions are B ⊂ Ȟ(A) closed subspaces which yield
closed operators DB with

dom(DB) =
{
u ∈ dom(Dmax) : u|Σ ∈ B

}
.

Motivations: physics: Rarita-Schwinger operator on 3/2-spinors, index

theory: Atiyah-Patodi-Singer corresponds to B = χ−(A)H
1
2 ( /∆M|Σ).
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Beyond the bi-sectorial regime

Bandara-McIntosh-Rosén 2018: (M, g) Spin-manifold, complete,
|Ricg|+ |∇gRicg| < Cg, inj(M, g) ≥ κ, ∃κ > 0.

Given C > 0 ∀h metrics with ‖h− g‖L∞ < 1and ‖∇gh‖L∞ ≤ C,∥∥∥∥∥∥ /Dg√
1 + /D

2
g

− /Dh√
1 + /D

2
h

∥∥∥∥∥∥
L2→L2

. ‖g − h‖L∞ .

Bandara-Rosén 2018: Similar results for M with compact boundary,
similar hypothesis but with perturbation of local boundary conditions.

Motivations: “spectral flows”, index theory, and physics
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“But I always say, one’s company, two’s a crowd, and three’s a party.”

- Andy Warhol
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