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Abstract

In 1883, Georg Cantor proposed that it was a valid law of thought that every set can be well ordered.
This Well Ordering Principle remained at the heart of Cantor’s cardinal numbers, which he had constructed
to investigate infinite sets. However, this Well Ordering Principle transcended itself into the Well Ordering
Problem when within a decade, Cantor himself was hunting for a proof. In 1908, Ernst Zermelo produced a
solution. Here, Zermelo formulated and made use of a new and extremely powerful mathematical tool - The
Axiom of Choice.

In this essay, we explore the Zermelo-Frankel Axioms of Set Theory, prove Zorn’s Lemma and the Well
Ordering Theorem, and consider some of the consequences of The Axiom of Choice.

Introduction

A Well Ordered set is a set in which every subset attains a minimum. The most common well ordered set
is the set of natural numbers. Well ordering is a desirable property because such sets somewhat resemble the
natural numbers [3, p66]. There is hope, then, that we can work with well ordered sets the way we work with
natural numbers. There are many wonderful consequences, but here are two: extend counting beyond the natural
numbers and extend the process of mathematical induction.

Well orderings are not, as Cantor discovered, a trivial “law of thought.” The Well Ordering Theorem: Every set
can be Well Ordered is a bold and daring claim. It is a deep result in set theory. This is the reason and the
motivation for the first part of this essay - to understand set theory - in particular axiomatic set theory.

”Beyond classical analysis1, there is an infinity of different mathematics,” writes Jean Diedonné [6, p4]. Mathe-
matics is set theory itself2. The first step towards understanding this statement is to consider: what do we mean
by mathematics? We have an intuitive understanding of numbers, arithmetic, counting, and so on. However, the
idea of set theory is to construct a theory in which these observations are a consequence, and in which all other
wonderful entities can be constructed rigorously. Rephrasing this, we can say that the motivation of set theory
was to create mathematics from something fundamental and unquestionable.

The first of these theories was näıve set theory, a theory in which sets were considered to be the intuitive objects.
The need for the axiomatising of set theory began at the turn of the 20th Century, when philosophers and
mathematicians began to find contradictions in näıve set theory. To illustrate the point, consider this problem
suggested by Bertrand Russell in 1903. Russell’s paradox [2, p9] runs as follows: if f is a set that contains all
sets (the universal set), and M = {A ∈ f : A 6∈ A}, then is M ∈M? Well, suppose that M ∈M. Then we have
M 6∈ M. If M 6∈ M, then M ∈ M. This problem highlights an inconsistency - the existence of a universal set
was taken for granted in näıve set theory [3, p7]. This problem is grave: Mathematics can be only as accurate
at the theory from which it is constructed. The set theory which we explore is the Zermelo-Frankel set theory -
the theory on which classical analysis is based - and in fact, the accepted theory for defining mathematics.

Ideally, the axioms themselves should be “unobjectionable truths.” By the very nature of axioms, however, there
is always debate. There has, in fact, been one axiom of set theory which has been subjected to severe criticism

1Based on Zermelo-Frankel-Choice axioms.
2Where this is seemingly false, the theory can be easily extended to consistently deal with “classes”. See [2, p9].
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and debate. This has been the Axiom of Choice. In his day, David Hilbert writes that this axiom is the “most
attacked up to the present in mathematical literature” [6, p1]. This axiom can be used to non-constructively
prove the existence of some fantastic objects - some of which are seeming paradoxes. We will consider the choice
axiom to some depth, and in fact, prove that it is equivalent to the Well Ordering Theorem.

1 The Language of Set Theory

Preceding a discussion of the non-logical Zermelo-Frankel Axioms, we consider the logic of our language.

The language of set theory consists of the following:

1. Variables: usually denoted by x,X, η,M and so on. In general, we shall used capitalised letters for denoting
sets, and capitalised script characters for denoting sets of sets.

2. The predicate ∈ (of belonging): We say x belongs to X by writing x ∈ X.

3. The predicate = (equality): If x equals y, we write x = y.

4. Predicate logic: negation (¬, not), conjunction (∧, and), disjunction (∨, or), implies ( =⇒ , implies),
equivalence (⇐⇒ , iff).

5. Logical quantifiers: Universal quantifier (∀, for all) and Existential quantifier (∃, there exists).

6. Scope symbols: (), [], where the scope is limited to the brackets.

A sentence for our purposes is characterised by the three following rules:

1. Let x, y be variables, then x ∈ y is a sentence and we write S(x, y) = “x ∈ y”.

2. If S, T are sentences, then ¬S, S ∨ T , S ∧ T , S =⇒ Y , S ⇐⇒ Y , S = Y are also sentences.

3. Let S(a) be a sentence in a. Then ∀a[S(a)] and ∃a[S(a)] are also sentences.

It is worthwhile noting that we have not been rigorous and formal in constructing this underlying logic. For
instance, we have been näıve in using the relation =, in defining our sentence S(x, y). It is possible to be
axiomatic and formal, yet this is extremely tedious and almost inappropriate for our purposes. Furthermore, we
shall refrain from the practice of checking that our expressions are in fact sentences, since in most cases, our
sentences are simple.

Sometimes, we will also be slack in our use of the universal quantifier. Rather than writing ∀x ∈ A, we shall
simply write x ∈ A. To avoid ambiguity, we shall always be explicit with the existential quantifier.

We shall call an arbitrary “collection” of “things” by the term collection. For those collections which are sets,
we shall explicitly call them sets. In general, a collection is not a set, but a set is a collection. However, to avoid
any confusion, we shall never refer to a set as a collection.

A formal, axiomatic and a more complete treatment can be found in [2, §2,3,4].

2 Zermelo-Frankel Axioms and Mathematics

Prior to the Zermelo-Frankel axioms, Russell and Whitehead attempted to axiomatise set theory and resolve
paradoxes by introducing a “doctrine” of types [9, p523]. It seems, however, that this theory obscured the
simplicity one seeks from axioms. The Zermelo-Frankel system delivered a more obvious and tangible set of
axioms.
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In this section, we introduce the Zermelo-Frankel axioms of set theory. Simultaneously, we attempt to construct
some of the mathematical machinery necessary to discuss the axioms in a more mathematical, rather than a
purely logical setting. This also demonstrates how some mathematics can indeed be built from set theory. We
achieve this by phrasing and discussing the axioms using the machinery that we develop, taking care to avoid
any logical circularity.

2.1 Axiom of Extension

We begin our discussion of set theory by asking a rather philosophical question: what does it mean for two sets to
be equal? Now, this may seem a little trivial, and we have an intuitive answer. However, intuition is insufficient
in when we seek rigour, and so we make explicit what we feel.

Axiom 1 (The Axiom of Extension) Let A,B be sets. Then A = B if and only if they contain the same
elements.

We highlight an immediate consequence of this definition.

Theorem 2.1

1. {a, a} = {a}

2. {a, b} = {b, a}

Proof For the first result, note that x ∈ {a, a} ⇐⇒ x ∈ {a}. The second result follows by the same argument.
�

This short but insightful result highlights that repeated elements are ignored in sets, and that sets are unordered.
These are crucial properties of sets, and they are worthy of attention. Also, Extension (Axiom 1) is used to
guarantee the uniqueness of sets. Since we have mentioned this fact here, we shall not be explicit in all but the
proofs where it is considered necessary.

We now define the notion of a subset:

Definition 2.2 (Subset, Proper Subset) Let A and B be sets. If x ∈ A =⇒ x ∈ B, then we say that A is
a subset of B and write A ⊆ B or B ⊇ A. If A ⊆ B but A 6= B, then we write A ( B or B ) A, and we say
that A is a proper subset of B.

With the use of this notation, we can give another formulation of Extension (Axiom 1). We can say that sets
A = B iff A ⊆ B and B ⊆ A.

We also note the following useful result about the subset relation.

Theorem 2.3 (Transitivity of Subsets) If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof Since A ⊆ B, we know that x ∈ A =⇒ x ∈ B. And since B ⊆ C, x ∈ B =⇒ x ∈ C. But then
trivially, x ∈ A =⇒ x ∈ C. �
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2.2 Axiom of Replacement

We now consider the schema for replacement. The power and importance of this axiom will be highlighted as
we begin to delve deeper into set theory, and more specifically extending counting to an infinite setting. The
motivation behind this axiom is to characterise when we can create a new set by substituting values of the old
set.

Axiom 2 (The Axiom of Replacement) Let S(a, b) be a sentence, and A a set. If for all a ∈ A, there exists
a unique b such that S(a, b) is true, then there exists a set B such that b ∈ B ⇐⇒ for some a ∈ A, S(a, b) is
true.

This axiom might seem somewhat cryptic. But it tells us this: If we have some sentence S(a, b), and for each a
we there is exactly one b for S(a, b) true, then the collection X = {b : S(a, b)} is a set.

We now state a theorem which will be of frequent use:

Theorem 2.4 (Theorem of Specification) Let S(a) be a sentence on a and let A be a set. Then B =
{a ∈ A : S(a)} is a set.

Proof We consider the sentence S′(a, b) = “a ∈ A ∧ S(a) ∧ a = b”.

Now, by Replacement (Axiom 2), we are guaranteed a set C such that b ∈ B ⇐⇒ S(a, b). But we have a = b,
which implies that a ∈ B ⇐⇒ a ∈ A ∧ S(a). By Extension (Axiom 1), this is exactly the set B. �

Initially, this theorem was introduced as an axiom - the Axiom of Specification (also called Separation). When
Replacement became necessary to obtain deeper results, Specification was made redundant.

We illustrate how this theorem can be used to solve the problem which served as a primary motivation for the
axiomatising of set theory: Russell’s Paradox.

Theorem 2.5 (Nonexistence of the Universal Set) There exists no Universal set.

Proof Suppose that there exists a universal set. Let f be that set. We note that the sentence S(a) = “a 6∈ a” is
a valid sentence. Now by Theorem 2.4, A = {a ∈ f : a 6∈ a}, is a set. Now note that x ∈ A ⇐⇒ x ∈ f∧x 6∈ x.

Now if A ∈ A, then A ∈ f and A 6∈ A. If A 6∈ A, then A ∈ f (by hypothesis) and A ∈ A by construction of
A. Either way, if we assume A ∈ f we get a contradiction. The only way out of the contradiction is to assume
that A 6∈ f. But then f does not contain all sets. �

The proof shows that f is not a set, and consequently A is not guaranteed to be a set [2, p10]. It may be called
a class, but discussion of classes are beyond the scope of this essay.

While this may seem a contradiction to the logic of our proof, it is not. Here is the reason: we’ve assumed that
the collection which we call the universal set is in fact a set, and from this it follows that we can legitimately
apply Specification (Theorem 2.4) to obtain the object in question as a set. The fact that it is not a set only gives
the proof greater validity - if we investigated the theory of classes, we could use this fact as the contradiction in
our proof.

Another point worth noting is that generally, when we cannot construct sets just by stating a property. For
instance {x : x is an elephant} is not a set.

In general, when we use Specification, given a sentence P (x), we will either write {x ∈ A : P (x)} or if we write
{x : P (x)}, then we assume that P (x) specifies that x belongs to some set. Note, this is not a contradiction to
our formulation of Replacement (Axiom 2). In this axiom, we still need an initial set to “replace.”
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2.3 Axiom of Empty Set

So far, we have discussed what we mean by set equality, and to some extent, how to create a new set out of a
pre-existing one. But for all we know, we may have been working in a vacuum. This next axiom guarantees that
there is at least one set. Later, we will see that this axiom (along with the other axioms of set theory) are in
fact sufficient to create mathematics.

Axiom 3 (The Empty Axiom) There exists a set, denoted ∅ = {}, that contains no elements.

As always, the uniqueness of this set is guaranteed by Extension (Axiom 1).

In order to construct the empty set, we could have equally well have assumed the existence of some set[3, p8].
Then by the use of Specification (Theorem 2.4), we could use the sentence: S(a) = “a ∈ S ∧ a 6= a”, which
would result in a set containing no elements - or ∅. The preference of approach is a question of aesthetics. The
approach taken feels more minimal.

There is one more point to emphasise. The empty set ties in beautifully with logic. This is the notion of vacuous
truth. Informally, it means that any universally quantified implication about the empty set is always true. Without
proof, we use the following identity from logic: (p =⇒ q) ≡ ¬p ∨ q.

Theorem 2.6 (The principle of vacuous truth) Let P (x) be some sentence. Then ∀x [x ∈ ∅ =⇒ P (x)] is
always true.

Proof Using the identity which we discussed in the previous paragraph, note the following:

∀x [x ∈ ∅ =⇒ P (x)] ≡ ∀x [¬ (x ∈ ∅) ∨ P (x)] ≡ ∀x [x 6∈ ∅ ∨ P (x)]

But it is always true that x 6∈ ∅ by Empty Axiom (Axiom 3). �

What follows from this principle the following fact:

Theorem 2.7 Let A be a set. Then ∅ ⊆ A.

Proof Given a set A, consider sentence S(a) = “a ∈ A”. Then, we consider ∀x ∈ ∅ =⇒ S(x). This is
vacuously true (Theorem 2.6). The result follows by Definition 2.2. �

2.4 Axiom of Pairs

Suppose we have two sets A, and B. The question remains: are these sets elements of some set? The theory
we have built is to weak to resolve this question. This motivates the following axiom.

Axiom 4 (The Axiom of Pairing) For any two sets A, and B, there exists a set X that contains A, and B.

By the use of Specification (Theorem 2.4), we can find a set Y ⊆ X such that Y = {A,B}. Consider setting
S(a) = “a = A ∨ a = B”.

We give names to two types of sets that are special:

Definition 2.8 (Unordered Pair) Let X = {a, b}. Then X is an unordered pair.

Definition 2.9 (Singleton) The set A = {a} is called a singleton.

5



2.5 Axiom of Unions

It follows naturally that given an arbitrary set of sets C, we want a superset in which every set in C is a subset.

Axiom 5 (The Axiom of Unions) Let C be a set of sets. The there exists a set C such that for all A ∈ C ⇐⇒
A ⊆ C.

Alternatively, we could relax our “if and only if” condition, and use Specification (Theorem 2.4) to create the
set guaranteed by Unions (Axiom 5).

Now we define the notation for unions.

Definition 2.10 (Union) Let C be a set of sets. Let C be the set guaranteed by Unions (Axiom 5). Then we
say that C is the union of the sets of C and write:

C =
⋃

C =
⋃
A∈C

A

We state two trivial facts about unions:

Theorem 2.11

1.
⋃

∅ =
⋃
A∈∅ A = ∅

2.
⋃
{A} =

⋃
X∈{A}X = A

Proof Trivial. The first result is a vacuous argument, and the second by a simple application of Extension
(Axiom 1). �

Suppose we have a pair of sets. Then the union of these sets can be written in a particular way. Note that the
definition does not highlight an exception, but rather, it emphasises our definition in this special case.

Definition 2.12 (Union of a Pair) Let C = {A,B}. Then we write:⋃
C = A ∪B = {x : x ∈ A ∨ x ∈ B}

We present some basic and trivial facts about unions of pairs. We omit the proofs since they are straightforward.

Theorem 2.13 (Properties of Union of Pairs) Let A, B, C be sets. Then,

1. A ∪∅ = A

2. A ∪B = B ∪A

3. A ∪ (B ∪ C) = (A ∪B) ∪ C

4. A ∪A = A

5. A ⊆ B ⇐⇒ A ∪B = B
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2.6 Intersections

Given a set of sets, we want to create a collection of elements of the sets such that the collection is a set. This
is the motivation for creating the intersections of sets. The results obtained so far are in fact strong enough to
assert the collection in the following definition is a set.

Definition 2.14 (Intersection) Let ∅ 6= C be a set of sets. The we define the intersection of the sets in C by:⋂
C =

⋂
A∈C

A = {x ∈ X : ∀X ∈ C}

The sharp mathematician would immediately ask: why do we seek C 6= ∅? Well, suppose that C = ∅. Then,
consider the intersection:

C =
⋂

C

=
⋂

∅

= {x ∈ X : ∀X ∈ ∅}

Now consider the statement a 6∈ C, which implies that x 6∈ X and X ∈ ∅. Vacuously (Theorem 2.6) it is true
that that every x ∈ C. But that would mean that C is the universal collection that is a set, and it would result
in a contradiction in our theory.

This does not cause a huge problem. We just need to be careful that the set of sets we have is not empty when
we take intersections. Where we do not make this explicit, it is always assumed that such a set is nonempty.

As with intersections we note that pairs of sets give rise to the following definition.

Definition 2.15 (Intersection of a Pair) Let C = {A,B}. Then we define the intersection by:⋂
C = A ∩B = {x : x ∈ A ∧ x ∈ B}

We state some rudimentary properties of intersections. The proofs of the following statements are a trivial
application of Extension (Axiom 1).

Theorem 2.16 (Properties of the Intersection of a Pair)

1. A ∩∅ = ∅

2. A ∩B = B ∩A

3. A ∩ (B ∩ C) = (A ∩B) ∩ C

4. A ⊆ B ⇐⇒ A ∩B = A

And further, we note that intersections and unions are distributive.

Theorem 2.17 (Distributivity of Intersections over Unions)

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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2.7 Complementation

Here, we define the notion of what it means to “subtract” a set of things from a set. So, when we speak of
complement, we are always talking about relative complement.

Definition 2.18 (Complement) Let A and B be sets. Then we define the complement of B by A:

A \B = {x ∈ A : x 6∈ B}

Sometimes, this is also referred to as set difference. Again, we present some important properties of complement.
These are straightforward results and thus the proofs are omitted.

Theorem 2.19 (Properties of Complement)

1. x 6∈ B ⇐⇒ x 6∈ A \B whenever A ⊆ B

2. A \ (A \B) = A ∩B

3. A \∅ = A

4. A \A = ∅

5. A ∩ (B \A) = ∅

6. A ∪ (B \A) = A ∪B

7. A ⊆ B ( E ⇐⇒ E \B ⊆ E \A whenever A,B ( E

The following theorem is also straightforward. However, the first part of it is used frequently, so we present a
proof. The second part is a tedious, but trivial application of Extension (Axiom 1).

Theorem 2.20

1. A ⊆ B ⇐⇒ A \B = ∅

2. A ∩ (B \ C) = (A ∩B) \ (A ∩ C)

Proof

1. Let A ⊆ B. Then A \ B = {x ∈ A : x 6∈ B}. But A ⊆ B and from the contrapositive of the definition,
x 6∈ B =⇒ x 6∈ A. It follows that A \B = ∅.

To prove the converse, suppose that A \B = ∅. Trivially, whenever x 6∈ B =⇒ x 6∈ A, and the contrapositive
yields x ∈ A =⇒ x ∈ B. So, A ⊆ B.

�

2.8 Axiom of Powers

It is a consequence of Specification (Theorem 2.4) that a subset of a set is itself a set. However, is the collection
of all subsets of a set itself a set? We would certainly hope so - but the axioms we have discussed so far are not
powerful enough provide an answer.
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Axiom 6 (The Power Axiom) For each set X the collection that contains all and only the subsets of X denoted
℘ (X) is a set.

Alternatively, we could have claimed the existence of some set that contains all subsets of the set, but this
definition is minimal and the uniqueness of ℘ (X) is guaranteed by Extension (Axiom 1). We call ℘ (X) the
power set of X.

We present some fundamental results about the power set.

Theorem 2.21 (Properties of the Power Set) Let A, B be sets. Then:

1. ∅ ∈ ℘ (A)

2.
⋂
℘ (A) = ∅

3. A ⊆ B =⇒ ℘ (A) ⊆ ℘ (B)

4. ℘ (A) ∩ ℘ (A) = ℘ (A ∩B)

5. ℘ (A) ∪ ℘ (B) ⊆ ℘ (A ∪B)

Proof

1. By Theorem 2.7, ∅ ⊆ A. It follows then that ∅ ∈ ℘ (A).

2. Since ∅ ∈ ℘ (A), by Theorem 2.16 the result follows.

3. Let X ∈ ℘ (A). Then X ⊆ A =⇒ X ⊆ B. Trivially, it follows that X ∈ ℘ (B).

4. Note: X ∈ ℘ (A) ∩ ℘ (B) ⇐⇒ X ⊆ A ∧X ⊆ B ⇐⇒ X ∈ ℘ (A ∩B).

5. Let X ∈ ℘ (A) ∪ ℘ (B) =⇒ X ∈ ℘ (A) ∨X ∈ ℘ (B) =⇒ X ⊆ A ∪B =⇒ X ∈ ℘ (A ∪B).

�

The following result relates complements to unions and intersections.

Theorem 2.22 (Generalised De Morgan’s Laws) Let X be a set and let ∅ 6= C ⊆ ℘ (X). Then:

1. X \
(⋃

A∈CA
)

=
⋂
A∈C (X \A)

2. X \
(⋂

A∈CA
)

=
⋃
A∈C (X \A)

Proof

1. Let x ∈ X \
(⋃

A∈CA
)
. Then x ∈ X and x 6∈

⋃
A∈CA. So, for all A ∈ C, x 6∈ A. By Theorem 2.19 (1), we

have x ∈ X \A. It follows then that x ∈
⋂
A∈C (X \A).

Conversely, let x ∈
⋂
A∈C (X \A). Then for all A ∈ C, x ∈ X \ A. Again, we invoke Theorem 2.19 (1), and it

follows that x 6∈
⋃
A∈CA which implies x ∈ X \

⋃
A∈CA.
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2. Similarly, let x ∈ X \
(⋂

A∈CA
)
. So, x ∈ X and x 6∈

⋂
A∈CA, for all A ∈ C. It follows then x ∈ X \ A for

all A ∈ C which implies x ∈
⋂
A∈CX \A.

Conversely, let x ∈
⋂
A∈CX \ A. Then, x ∈ X \ A for all A ∈ C, which implies that x 6∈ A for all A ∈ C. It

follows then that x 6∈
⋃
A∈CA which implies x ∈ X \

(⋃
A∈CA

)
.

�

A natural question to ask is why this proof is presented here rather than in the previous section. This question
highlights an important point. In order for De-Morgan’s Laws to work, we need at least a “virtual” universe.
The complementation here is in some sense “absolute,” since all operations are restricted to some larger set. It
is customary in mathematics to take a set “large enough” in areas where a universal set may seem necessary.

Another point: we begin with a set X, and we consider collections of subsets of X. However, without the Power
Axiom (Axiom 6), we cannot deduce that such collections are indeed sets. Indeed, if they are not sets, then our
definitions of union, intersection, and compliment only hold in the vacuum. Axiom 6 has been aptly named - it
is indeed powerful.

3 Ordered Pairs

We have previously discussed that sets are unordered. Theorem 2.1 is a proof of this fact. However, in order to
construct relations, functions, and all the rest, we need a notion of order.

The construction here may seem somewhat artificial. However, it’s not a high price to pay when considering the
only other alternative - creating a redundant axiom.

With the aid of the Power Axiom (Axiom 6), we know that given a pair {a, b}, the collection {{a} , {a, b}} is
indeed a set. This motivates the following definition.

Definition 3.1 (Ordered Pair) Let {a, b} be a set. Then we define the ordered pair:

(a, b) = {{a} , {a, b}}

The following result tells us that such orderings are unique. A proof can be found in [3, p24].

Theorem 3.2 (Uniqueness of Ordered Pairs) If (a, b) = (x, y), then a = x and b = y.

Now we assert the existence of a set that contains exactly all of the ordered pairs (a, b) of sets a ∈ A and b ∈ B.

Theorem 3.3 (Cartesian Product Theorem) Let A, B be sets. Then there exists a set denoted A×B such
that (a, b) ∈ A×B ⇐⇒ a ∈ A ∧ b ∈ B.

Proof Fix a ∈ A and b ∈ B. The, note that:

{a} ⊆ A ∧ {b} ⊆ B =⇒ {a} , {a, b} ⊆ A ∪B
⇐⇒ {a} , {a, b} ∈ ℘ (A ∪B)
=⇒ {{a} , {a, b}} ⊆ ℘ (A ∪B)
⇐⇒ {{a} , {a, b}} ∈ ℘ (℘ (A ∪B))

We define A×B ⊆ ℘ (℘ (A ∪B)) by using Specification (Theorem 2.4):

A×B = {(a, b) ∈ ℘ (℘ (A ∪B)) : a ∈ A ∧ b ∈ B}

With uniqueness of this set is guaranteed by Extension (Axiom 1). �
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The next result tells us that for any set of ordered pairs, we can always find a Cartesian product that contains
them. A proof sketch can be found in [3, p24].

Theorem 3.4 Let R be a set of ordered pairs. Then there exists an A×B such that R ⊆ A×B.

We now list some properties of ordered pairs. Again, the proofs are straightforward, but tedious, and hence they
are omitted.

Theorem 3.5 Let A,B,X, Y be sets. Then:

1. (A ∪B)×X = (A×X) ∪ (B ×X)

2. (A ∩B)× (X ∩ Y ) = (A×X) ∩ (B × Y )

3. (A \B)×X = (A×X) \ (B ×X)

4. A×B = ∅ ⇐⇒ A = ∅ ∨B = ∅

5. A×B ⊆ X × Y ⇐⇒ A ⊆ X ∧B ⊆ Y provided A×B 6= ∅

It is rather important to emphasise that the preceding theorem does not imply that (A ∪B) × (X ∪ Y ) =
(A×X) ∪ (B × Y ). This statement is in fact false.

3.1 Relations and Functions

Having a concept of an ordered pair, we can now move on to describe relations.

Definition 3.6 (Relation) Let X be a set, and let R ⊆ ℘ (℘ (X)). Then R is a relation on X and we write
xRy ( x stands in relation to y in R) if (x, y) ∈ R. We define the domain and range of the relation R by:

dom (R) = {x ∈ X : ∃y ∈ X, (x, y) ∈ R}
ran (R) = {y ∈ X : ∃x ∈ X, (x, y) ∈ R}

There is a special type of relation which will be of importance to us at a later stage. This is the the notion of
an equivalence relation.

Definition 3.7 (Equivalence Relation) Let R be a relation on X. Then if:

1. ∀x ∈ X, (x, x) ∈ R (Reflexive)

2. ∀x, y ∈ X, (x, y) ∈ R =⇒ (y, x) ∈ R (Symmetric)

3. ∀x, y, z ∈ X, (x, y) , (y, z) ∈ R =⇒ (x, z) ∈ R (Transitive)

Then R is an equivalence relation. For an equivalence relation, we write x (mod R) = [x] = {y : xRy}, the
equivalence class of x.

Definition 3.8 (Partition of a Set) Let X be a set, and let P ⊆ ℘ (X). Then if:

1.
⋃

P = X

11



2. ∀X,Y ∈ P =⇒ X ∩ Y = ∅

Then P is partition of of X.

This following theorem draws the connection between partitions and equivalence relations.

Theorem 3.9 Let X be a set. Then:

1. If R is an equivalence relation on X, then S (mod R) is a partition of X.

2. If P is a partition of X, then there exists a relation R which induces P.

Proof

1. Since R is an equivalence relation, (x, x) ∈ R, for all x ∈ X. Then, it follows that
⋃
x∈X x = X.

Now take [x], [y] ∈ X (mod R). Suppose z ∈ [x] and z ∈ [y]. Then (x, z) ∈ R and (z, y) ∈ R which implies
(x, y) ∈ R. It follows that [x] = [y].

2. Let P be a partition of X. We define a relation R:

R = {(x, y) , (y, x) ∈ X ×X : x, y ∈ Pα ∈ P}

Trivially, R is symmetric and reflexive. We show that transitivity holds. Suppose (x, y) , (y, z) ∈ R. This holds
if and only if x, y ∈ Pα and y, z ∈ Pβ , for some Pα, Pβ ∈ P. Since P is a partition, we have that α = β, and it
follows that x, z ∈ Pα ⇐⇒ (x, z) ∈ R.

�

Now we define a function in the language of set theory. Intuitively, we would like a function to “map” one
value to another. We do not, however, want a function to map one value to possibly two values. The following
definition makes this informal discussion rigorous.

Definition 3.10 (Function) Let X, Y be sets, and let f be a relation in X × Y . Then if dom (f) = X and if
(x, y)∧ (x, z) ∈ f =⇒ y = z, then we say that f is a function f : X → Y and write f(x) = y when (x, y) ∈ f .

Firstly, we mention how to create a new function from another.

Definition 3.11 (Restriction, Extension) Let f : X → Y . Then given A ⊆ X, f |A : A → Y is called the
restriction of f to A, and f is called an extension of f |A.

Now we answer a fundamental question about collections of functions. Given sets X and Y , is collection of all
functions from X to Y itself a set?

Theorem 3.12 (Set of functions) Let X, Y be sets. Then the collection of all functions from X to Y denoted
XY is a set.

Proof We note that given any function f , f ⊆ X ×Y , since every function is a relation. Thus, f ∈ ℘ (X × Y ).
Then XY ⊆ ℘ (X × Y ), and can be created explicitly by using Specification (Theorem 2.4). �
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With functions, sometimes we call the range of the function its image, and write ran (f) = im (f). Furthermore,
we will be sloppy with notation and denote im (f) = f(X), where X = dom (f).

Definition 3.13 (Inverse Image) Let f : X → Y . Then we define the inverse image of f at y by:

f−1(y) = {x ∈ X : f(x) = y}

It turns out that there are two types of functions that are especially important.

Definition 3.14 (Injective) Let f : X → Y . If f(x) = f(y) =⇒ x = y, then we say that f is an injection or
injective.

Definition 3.15 (Surjective) Let f : X → Y . If for all y ∈ Y , there exists an x ∈ X such that f(x) = y, then
we say that f is a surjection or surjective.

These definitions motivates the following important theorem about functions.

Theorem 3.16 (Existence of Unique Inverse) Suppose f is injective and surjective. Then, there exists a
unique f−1 inverse such that f−1(f(x)) = x, for all x ∈ X.

Definition 3.17 (Bijection) If f : X → Y is both injective and surjective, then it is called a bijection or
bijective.

The proof of this theorem is elementary and readily accessible. The fact that we have a conflict with our notation
for the unique inverse and the inverse image may seem somewhat sloppy. However, this is not quite an accident.
Note that when f is bijective, each inverse image f−1(y) = {x : f(x) = y} = {x}, and justifies our use of this
notation.

There is one more important concept about functions. This is the notion of composing two functions together:

Definition 3.18 (Composition) Let f : X → Y and g : Y → Z be functions. Then consider the function
h : X → Z defined by:

h(x) = (g ◦ f)(x) = g(f(x))

Then h is the composition of g and f .

We state two useful results. The proofs are trivial and are omitted.

Theorem 3.19 Let f : X → Y , g : Y → Z, h : Z →W . Then:

1. (h ◦ g) ◦ f = h ◦ (g ◦ f)

2. (g ◦ f)−1 = f−1 ◦ g−1

Theorem 3.20 If f : X → Y and g : Y → Z then:

1. If f, g injective then g ◦ f injective

2. If f, g surjective then g ◦ f surjective

13



3.2 Families of Sets

Functions are important fundamental objects in all areas of mathematics. The discussion to follow will highlight
their importance.

Definition 3.21 (Family) Let Φ, X be sets. Suppose x : Φ→ X. Then we write x(α) = xα, and we call xα a
family in X, and Φ the index set.

Naturally, we can replace X with a power set, and we can begin to consider families of subsets. In fact, any set
of sets itself is a family - the index set is itself. For this reason, we shall often talk about families rather than
sets of sets.

In general, we will be loose with the notation, and omit supplying an index set. However, it is important to
emphasise that there is always an implied index set.

Definition 3.22 (Intersection, Union of Families) Let C = {Xα}, α ∈ Φ, a family of sets. Then,

1.
⋃

C =
⋃
α∈ΦXα is the Union of the family.

2.
⋂

C =
⋂
α∈ΦXα is the Intersection of the family (C 6= ∅).

We have seen in Theorem 3.3 that we can make sense of products when we have pairs. It turns out that families
is the exact way in which arbitrary products can be characterised. This definition will gain more merit when we
consider the Choice Axiom.

Definition 3.23 (Product of Family) Let C = {Aα} be a family of sets, with index Φ. Then define product:∏
C =

∏
α∈Φ

Aα =
{
{xα} ∈ Φ

S
C : xα ∈ Aα

}

Now, is
∏

C indeed a set? We reason as follows: By Theorem 3.12, we know that the collection of all functions
from Φ to

⋃
C is indeed a set. Then, by invoking Specification (Theorem 2.4), we can assert that

∏
C is indeed

a set.

3.3 Axiom of Infinity

Let us now turn to the problem of constructing the natural numbers. We only really know of the existence of
one set which the Empty Axiom (Axiom 3) guarantees. Somehow, we should construct numbers from it. The
following definition may shed some light on a possible approach.

Definition 3.24 (Successor) Let A be a set. The we define the successor of A by:

A+ = A ∪ {A}

Note that, such a construction is a valid set, since {A} ∈ ℘ (A).

Definition 3.25 (Natural Numbers)

0 = ∅
1 = 0+ = {0} = {∅}
2 = 1+ = {0, 1} = {∅, {∅}}
3 = 2+ = {0, 1, 2} = {∅, {∅} , {∅, {∅}}}
...
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It may seem awkward that every number contains all the numbers before it. But bear with us for a moment.
This very fact shall become of great importance when we consider Ordinal numbers.

A more profound question is this: is the collection of all natural numbers a set? Our theory is too weak to
provide an answer. So, we axiomatise.

Axiom 7 (Axiom of Infinity) There exists a set that contains 0 and all its successors.

What we really want, however, is the existence of a set that contains only the natural numbers. The following
result tells us that such a set does indeed exist.

Theorem 3.26 (Existence of minimal successor set) There exists a set ω that contains only 0 and all its
successors.

Proof Let A∞ be the set guaranteed by Infinity (Axiom 7). Then, let:

C = {A ∈ ℘ (A∞) : A contains 0 and all its successors}

We have C 6= ∅, since A∞ ∈ C. Then, we let ω =
⋂

C.

Note, then that 0 ∈ ω, since 0 ∈ A,∀A ∈ C. Also, let n ∈ ω. Then n ∈ A,∀A ∈ C which implies n+ ∈ A,∀A ∈
C. But then n+ ∈ ω. The minimality of ω is a simple proof by contradiction. �

From this point onwards, we shall denote this minimal set ω.

Theorem 3.27 (The Principle of Mathematical Induction) If S ⊆ ω and 0 ∈ S and n+ ∈ S whenever
n ∈ S, then S = ω.

Proof Suppose S 6= ω. But then, S ( ω, and this contradicts the minimality of ω guaranteed by Theorem 3.26.
�

The result above gives more merit to axiomatic set theory. The Principle of Mathematical Induction is indeed
a very powerful technique of proof. Historically, it has been just what it is named - a principle. However, it is
reassuring to know that in the light of set theory, it in fact becomes a consequence.

4 Axiom of Regularity

We present the following axiom for completeness of our discussion of the Zermelo-Frankel system. This axiom
will not be quoted or used elsewhere in the essay. It is, however, required for deeper results in the theory. We
state it and examine two critical consequences.

Axiom 8 (Axiom of Regularity) For any set X 6= ∅, there exists a Y ∈ X such that X ∩ Y = ∅.

This axiom is also sometimes called the Foundation Axiom. We illustrate two profound consequences.

Theorem 4.1 Let X 6= ∅ be a set. Then X 6∈ X.

Proof Suppose that X is a set and X ∈ X. Consider the set {X}. This set contradicts Regularity, since there
exist no Y ∈ {X} such that X ∩ Y = ∅. �
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Theorem 4.2 For any family of sets {Xn : n ∈ ω}, it is never true that Xn+ ∈ Xn for all n ∈ ω.

Proof Suppose there does exist such a family F. Trivially, there exist no X ∈ F such that X ∩ F = ∅, which
again contradicts Regularity. �

These results resolve two important questions: can a set be a member of itself, and can the ∈ predicate give rise
to an infinite chain. Although results are a consequence of this axiom, they were in fact the very motivation for
Regularity. A more complete discussion can be found in [8, p56], [2, p19], and [6, p153].

5 The Peano Postulates and Arithmetic

We consider the Peano theory of arithmetic defined by the postulates which Peano presented in 1889 [10, p83].
Initially, they were considered to be axioms of their own right. However, in the presence of set theory, they are
consequences! This is most desirable and enlightening. Our model is strong enough to imply the statements we
consider the “very fountainhead of all mathematical knowledge” [3, p47].

5.1 The Peano Postulates

Before we state and prove the Peano axioms, we shall introduce two auxiliary results necessary to prove the
postulates.

Lemma 5.1 No natural number is a subset of any of its elements.

Proof Let S = {n ∈ ω : ∀z ∈ n, n 6⊆ z}.

Then 0 ∈ S by Theorem 2.6. By construction, we have n ⊆ n =⇒ n 6∈ n. This implies that n+ 6∈ n. Let
n+ ⊆ x =⇒ n ⊆ x. Then we have x 6∈ n. Also, n+ 6⊆ n and n+ 6⊆ z, for all z ∈ n (since z ∈ n). But this
implies n+ 6∈ z for all z ∈ n and n+ 6∈ n. It follows that n+ ∈ S.

By Induction (Theorem 3.27), S = ω and the proof is complete. �

Lemma 5.2 Every element of a natural number is a subset of that number.

Proof Let S = {n ∈ ω : x ⊆ n, ∀x ∈ n}.

Then 0 ∈ S by Theorem 2.6.

Let n ∈ S. Then for all x ∈ n, x ⊆ n. Consider n+ = n ∪ {n}. Now x ∈ n =⇒ x ∈ n+ =⇒ x ⊆ n+. Also,
n ∈ n+, and {n} ⊆ n+. But this exhausts all the elements of n+, and it follows that n+ ∈ S. By Induction
(Theorem 3.27) we have that S = ω. �

We now state the postulates:

Theorem 5.3 (The Peano Postulates)

1. 0 ∈ ω

2. n ∈ ω =⇒ n+ ∈ ω
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3. (Principle of Mathematical Induction): If S ⊆ ω and 0 ∈ S and n+ ∈ ω whenever n ∈ ω then S = ω

4. n+ 6= 0,∀n ∈ ω.

5. If n,m ∈ ω and if n+ = m+, then n = m.

Proof

1,2,3. Trivially, the results follow from Theorem 3.26 and Theorem 3.27.

4. By definition, n+ = n ∪ {n}. Since n ∈ n+, it is impossible that n+ = ∅.

5. We note that since n+ = m+ it follows that m,n ∈ n+ and m,n ∈ m+. So we have either n ∈ m or n = m
or m ∈ n. If n 6= m, then n ∈ m and m ∈ n, which implies n ∈ n and Lemma 5.2, n ⊆ n. But this contradicts
Lemma 5.1.

�

We have seen that Induction (Theorem 3.27) is indeed a very powerful tool in proving statements about the
natural numbers. But this process can be used to also define functions. In particular we shall define addition,
multiplication, and exponentiation using the following result.

With this motivation, we prove the following remarkable result.

Theorem 5.4 (The Recursion Theorem) Let X be a set, and let f : X → X. Fix a ∈ X. Then there exists
a function u : ω → X such that: {

u(0) = a

u(n+) = f(u(n))

Proof Let:

C =
{
A ⊆ ω ×X : 0 ∈ A ∧ (n, x) ∈ A =⇒

(
n+, f(x)

)
∈ A

}
Now C 6= ∅, since ω ×X ∈ C. We define u =

⋂
C. We prove that u is indeed a function.

Define:

S = {n ∈ ω : (n, x) , (n, y) ∈ u =⇒ x = y}

Firstly, 0 ∈ S. We prove by contradiction. Suppose 0 6∈ S. Then there are a 6= b ∈ X such that (0, a) , (0, b) ∈ u.
But certainly, u \ {(0, b)} ∈ C is guaranteed since n+ 6= 0. But this contradicts the minimality of u.

Now, let n ∈ S. So (n, x) ∈ u. Suppose n+ 6∈ S. Then, there exist some (n+, y) ∈ u with f(x) 6= y. We
consider u\n+, y. Since n+ 6= 0, (0, a) ∈ u\n+, y. And given (m, z) ∈ u\(n+, y) =⇒ (m+, f(z)) ∈ u\(n+, y),
since y 6= f(x). But again, this contradicts the minimality of u.

By Induction (Theorem 3.27), S = ω. �

17



5.2 Arithmetic

We are now ready to define sums, products, and exponents. The existence of the recursive functions in the
following definitions are guaranteed by Theorem 5.4.

Definition 5.5 (Sum) Let f : ω → ω be defined by f(n) = n+. Then for any m ∈ ω, we find um : ω → ω
such that um(0) = m and um(n+) = f(um(n)). We write this as m+ n.

Definition 5.6 (Product) Let fm : ω → ω be defined by fm(n) = m+ n. We find pm(0) = 0 and pm(n+) =
fm(pm(n)), for all m,n ∈ ω. We denote this as mn = m · n

Definition 5.7 (Exponent) Let fm : ω → ω be defined by fm(n) = n ·m, for all m,n ∈ ω. Then, we find
em(0) = 1 and em(n+) = fm(em(n)). We write this as mn.

It is straightforward, yet extremely tedious and beyond the scope of this essay to illustrate that these definitions
actually do give us the familiar laws and properties of sums, products and exponents.

We simply recite the following theorems which highlight some of the important aspects of arithmetic. Their
proofs are almost always an application of Induction (Theorem 3.27).

Definition 5.8 (Associative, Commutative) We say that a function ∗ : A×A→ A is associative if given for
any x, y, z ∈ A, (x ∗ y) ∗ z = x ∗ (y ∗ z). We say it is commutative if x ∗ y = y ∗ x, for all x, y ∈ A

Theorem 5.9 (Associativity, Commutativity) Sums, products, and exponents of natural numbers are asso-
ciative and commutative.

5.3 Comparability of the Natural Numbers

The motivation behind the following discussion is to define a notion of one number being greater or lesser than
the other. We know from the use of natural numbers that any two are indeed lesser or greater than the other.
We show that this is, in fact, a consequence of our construction.

Definition 5.10 (Comparability of Numbers) We say that two numbers m,n ∈ ω are comparable if m ∈ n
or n ∈ m or n = m.

Theorem 5.11 (Comparability Theorem for Numbers) Any two n,m ∈ ω are comparable.

Proof Define:

Sn = {m ∈ ω : n comparable to m}
S = {n ∈ ω : Sn = ω}

We show S0 ∈ ω. Take 0 ∈ ω. Then for any 0 6= m ∈ ω, 0 ∈ m. Otherwise 0 = m. So 0 ∈ S0. Now suppose
k ∈ S0. So either 0 = k or 0 ∈ k. Either way, 0 ∈ k+ and k+ ∈ S0. By Theorem 3.27, the result follows.

Now, suppose for some 0 6= n ∈ ω, we have Sn = ω. Now, n ∈ n+, so we have 0 ∈ Sn+ . Now take any
k ∈ Sn+ . So, either k ∈ n+ or k = n+ or n+ ∈ k. If n+ ∈ k, then n+ ∈ k+. Now if k ∈ n+, either k ∈ n or
k ∈ {n}. If k ∈ {n}, then k = n and k+ = n+. Otherwise, k ∈ n and we have that since k ∈ Sn = ω implies
k+ ∈ Sn. If, k+ = n+, there is nothing to do. Otherwise, we have k+ 6= n. Then if k+ ∈ n =⇒ k+ ∈ n+.
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But since both k+, n ∈ Sn, we must have n ∈ k+. We cannot have n+ = k+ (which would imply n = k by
Lemma 5.1 and contradict our assumption), so we must have that n+ ∈ k+. But we have shown that n+ and
k+ are comparable whenever k is. By Induction (Theorem 3.27) Sn+ = ω.

We have also shown that 0 ∈ S and whenever n ∈ S, n+ ∈ S. By Induction (Theorem 3.27) again, and we have
that S = ω. �

From this result, we have the following spectacular consequence.

Corollary 5.12 If m,n ∈ ω, then only one of the following hold:

1. m ∈ n

2. m = n

3. n ∈ m

Proof Fix m,n ∈ ω. By Theorem 5.11, we have that they are comparable. Now, suppose that m ∈ n and
m = n. But then m ∈ m which is a contradiction to Lemma 5.1. A similar contradiction occurs when if we
suppose n ∈ m and m = n. Suppose that m ∈ n and n ∈ m. But by Lemma 5.2, m ⊆ n. But this implies
n ∈ n which again contradicts Lemma 5.1. �

These asserts provide a sound motivation for attempting to define ordering of natural numbers. We want that
for any two natural numbers m,n, only one of the following are true: m = n, m < n or m > n. This looks very
similar to Corollary 5.12, and highlights the importance of this result. We characterise this informal discussion
into a rigorous definition.

Definition 5.13 (Lesser, Greater for Natural Numbers) Let m,n ∈ ω. If m ∈ n, we say m is less than n or
n greater than m and write m < n or n > m respectively. If m < n or m = n, we write m ≤ n.

5.4 Infinity

We have seen an axiom called “infinity,” and we have an intuitive understanding of saying ad infinitum. This,
however, lacks the mathematical rigour we seek. First, we characterise a way to “compare” two arbitrary sets.

Definition 5.14 (Set Equivalence) We say that sets A and B are equivalent if there exists a bijection f : A→
B. We write A ∼ B.

Theorem 5.15 Set Equivalence is an equivalence relation.

Proof Let A,B,C be sets. Trivially, A ∼ A, just take function f : A→ A defined by f(x) = x. Again, trivially,
if A ∼ B then B ∼ A, by Theorem 3.16.

Now, suppose A ∼ B and B ∼ C. Then, let f : A → B and g : B → C be the promised bijections. Trivially,
g ◦ f : A→ C is a bijection by Theorem 3.20. �

The following results highlight some important facts. Their proofs can be found in [3, §13]

Theorem 5.16
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1. Every proper subset of a natural number is equivalent to a smaller natural number.

2. For n ∈ ω, there exist no k ( n with n ∼ k.

This notion of set equivalence can be used to define infinity.

Definition 5.17 (Infinity) A set S is finite if it is equivalent to some natural number. Otherwise it is called
infinite.

We embrace our first infinite set:

Theorem 5.18 The set ω is infinite.

Proof Let S = {n ∈ ω : ω 6∼ n}. Trivially, 0 6∼ ω.

Now suppose n ∈ S, and suppose n+ ∼ ω. So there exists a bijection f : n+ → ω. Now consider the restriction
f |n : n → ω. So im (f |n) = ω \ x, where f(n) = x. Now consider the function s : ω → ω defined by
s(y) = y,∀0 6= y 6= x. And s(0) = x and s(x) = 0. Certainly, this is a bijection, since we are simply swapping 0
and x. Now, the function g : ω → ω\{0} defined by g(y) = y+ is trivially a bijection. But then, s◦g : ω → ω\x
is a bijection. Now, by Theorem 5.15, equivalence is transitive and it follows ω ∼ n, a contradiction. So, n+ ∈ S.
Our result follows from Induction (Theorem 3.27). �

The following results are important, but their proofs are straightforward and are omitted.

Theorem 5.19

1. A finite set is equivalent to a unique natural number.

2. Every subset of a natural number is finite.

These results motivate a way we can “count” the number of elements in a set. The following definition makes
such a characterisation clear.

Definition 5.20 (Number of Elements) Let F be a finite set. Then let n ∈ ω be the unique natural number
such that F ∼ n. Then we say that F has n elements and write |F | = n.

The following result confirms what we expect.

Theorem 5.21 If E ⊆ F , then |E| ≤ |F |.

6 The Axiom of Choice

6.1 The Axiom

We present the celebrated and widely debated Axiom of Choice.
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Axiom 9 (The Axiom of Choice) Let ∅ 6= C = {Aα} where α ∈ Φ be a family of nonempty sets. Then the
product ∏

C =
∏
α∈Φ

Aα

is nonempty.

We present the following result to assert fact that this axiom is a consequence when we are dealing with finite
families.

Theorem 6.1 (Finite Axiom of Choice) Let ∅ 6= F = {Fi} i ∈ n+ ∈ ω be a finite family of nonempty sets.
Then

∏
i∈n Fi 6= ∅.

Proof Let S =
{
n ∈ ω :

∏
i∈n+ Xi 6= 0,∀Xi 6= 0

}
.

Now, suppose n = 0. Then i = 0 and then F = X0. Trivially
∏

F 6= ∅ since X0 6= ∅ by hypothesis.

Suppose n ∈ S. So, given {Xi} nonempty family for i ∈ (n+)+, we know that
∏
i∈n+ Xi 6= ∅. It follows that:∏

i∈(n+)+

Xi =
∏
i∈n+

Xi ×Xn+

which must be nonempty since Xn+ 6= ∅ and by invoking Theorem 3.3(4).

The expected result follows from Induction (Theorem 3.27). �

Our formulation of Axiom 9 is not, in fact, the original way in which this axiom was stated [10, p186]. In our
notation, this can be thought of as guaranteeing the existence of a choice function [5, p9]. This motivates the
following results.

Theorem 6.2 (Existence of a Choice Function) For every set C 6= ∅ of nonempty subsets of a set X there
exists a function f : C→ X such that f(A) ∈ A.

Proof By Axiom 9,
∏
X∈CX 6= ∅. So, {xX}X∈C ∈

∏
C. But by Definition 3.23, x : C → X, such that

x(X) ∈ X. �

Corollary 6.3 (Equivalence of Axiom of Choice to Choice Function) Theorem 6.2 ⇐⇒ Axiom 9

Proof We need to only show ( =⇒ ). Assume Theorem 6.2 is true. Let f : C → X be the promised function.
Since f(A) ∈ A by hypothesis, we put fA = f(A), and by Definition 3.23 {fA}A∈C ∈

∏
C. But this implies

that
∏

C is nonempty. �

The following two important results are a direct application of the Choice axiom (Axiom 9) and the Recursion
Theorem (Theorem 5.4). A proof sketch can be found in [3, p61].

Theorem 6.4 Every infinite set has a subset equivalent to ω.

The following consequence was used by Dedekind as the very definition of infinity [3, p61].

Corollary 6.5 A set is infinite if and only if it is equivalent to a proper subset of itself.
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6.2 The Debate

We shall discuss the motivations for this axiom informally. The motivation comes from the fact that we want to
be able to make choices - i.e., allow us to “choose” elements from a set. As we have seen in Theorem 6.1, the
finite case is an almost trivial consequence. It is really in the infinite case that this process of choosing becomes
non-trivial, because the question becomes philosophical: what does it mean to choose an infinite number of
elements?

Without raising too many eyebrows, we attempt to provide an answer. We look beyond the problem of choosing
and concentrate instead on the Choice Axiom (Axiom 9). Our result in Corollary 6.3 tells us that this is equivalent
to the problem of making arbitrary choices, so it is valid that we shall instead concentrate on this more “tangible”
formulation. We have seen by Theorem 6.1 that it is indeed true that the finite product of a nonempty family
of nonempty sets is nonempty. Given that our current model is not strong enough to satisfactorily answer in the
general case, and on the assumption that a generalised axiom (Axiom 9) does not lead to logical contradictions,
why should we not accept it? If we know something is true in the finite case, why should we dismiss a generalisation
to the infinite without good reason?

Underlying this reasoning was the assumption that the axiom does not give rise to contradictions. Earlier in this
century, when the debate was at its peak, the problem of consistency was the greatest philosophical objection. In
1938 Kurt Gödel obtained results with regards to models of set theory and showed that Zermelo-Frankel Axioms
were consistent3 with The Choice Axiom [6, p3]. This dispelled any fears of contradictions. It was also shown
that The Choice Axiom was independent of the Zermelo-Frankel system. A surprising consequence was that the
negation of the axiom is also consistent with the Zermelo-Frankel system!

It is interesting to note that this axiom had been widely used, but implicitly, preceding its formal characterisation
by Zermelo [6, p8]. In fact, up until the 1960’s, instances of the implicit use of the axiom were discovered. A
more thorough survey can be found in [6].

Invoking the Choice Axiom seems unavoidable whenever we enumerate a set. Consider proving that the union of
a countable family of sets is countable. There is a sense of enumeration at some level in such a proof. We need
to order the elements, and immediately, we make choice. In fact, a more restricted version of this axiom can
then be employed. This axiom known as the Countable Axiom of Choice restricts the family to a countable set
of sets. In light of our preceding discussion, there are models of set theory in which the negation of the axiom is
assumed, and the real numbers - an uncountable set - is then the union of a countable set of sets [6, p9]. This
is an example of the fact that the Choice Axiom is indeed independent.

The Tychonoff Product Theorem [7, §37] is an example of a result that uses the full strength of Axiom 9. This
theorem guarantees that the product of a family of compact sets is also compact. Such a result is deep and
profound, and can be used to prove many extraordinary existential results in analysis. Another is the Vitali
Covering Theorem [1, p142], an extremely important result in Measure Theory, which guarantees the existence
of a countable set of closed balls that “fills” a measurable set and misses only a set of points of zero measure [6,
p246]. This theorem is generally proved by invoking Zorn’s Lemma, which as we shall see later, happens to be
an equivalence of the Axiom of Choice. Out of all such fantastic results, probably one of the most startling is
known as the Banach-Tarski Paradox [11, p27]. Informally, this paradox tells us that we can cut a sphere into
finite parts, reassemble them into two spheres with the sum of the volumes being unequal to the volume of the
original!

All these results have something in common. Their existence is proven in a non-constructive way. It is the
constructivists who are not persuaded by Gödel’s 1938 result in embracing Choice. Their criticism is that all
existence proofs should explicitly construct the object in question. Yet, such a demand would simply reduce
mathematics to a collection of algorithms.

Gödel’s result eased the anxieties of many philosophers and mathematicians of the potential danger of contra-
dictions in assuming the Choice Axiom. It is indeed a sigh of relief that the axiom is now widely accepted and
used by a large section of the mathematical community.

3Assuming that Zermelo-Frankel Axioms themselves are consistent. This cannot, in fact, be proved.
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7 Zorn’s Lemma

In this section, we shall prove an extremely useful result that is equivalent to the Choice Axiom. It is a maximal
principle published by Max Zorn in 1935, where such a principle was used for the first time in Algebra [5, p35].
Time and time again, this principle has become wonderfully useful. It seems that it is often easier to phrase
many existential problems in the language of Zorn.

The language of Zorn is somewhat more complex than the ideas that we have so far discussed. We introduce
the machinery of order to understand and prove this remarkable result.

7.1 Order

We begin with the most general notion of order.

Definition 7.1 (Partial Order) Let (X,≤) denote a set X with relation ≤. Suppose that:

1. x ≤ x, for all x ∈ X (Reflexive)

2. If x ≤ y and y ≤ x then x = y (Anti-Symmetric)

3. If x ≤ y and y ≤ z, then x ≤ z (Transitive)

The we say that (X,≤) or simply X is a partially ordered set.

Definition 7.2 (Chain/Total Order) Let (X,≤) be a partially ordered set. If for all x, y ∈ X, either x ≤ y or
y ≤ x, then (X,≤) is a chain or total order.

We have used the notation symbol ≤ explicitly. We are familiar with the use of less and greater with orderings
and we shall generalise this language to arbitrary orderings. The connection between ≤ and < should also be
obvious. In fact, we could have equally formulated our definitions in terms of < rather than ≤.

Definition 7.3 ((Weak) Initial Segment) Let (X,≤) be a partial order. Then, let Sa = {x ∈ X : x < a}, for
some a ∈ X. Then Sa is the initial segment/section of X by a. Similarly S′a = {x ∈ X : x ≤ a} is called weak.

Sometimes, a segment is also called a section.

Definition 7.4 (Minimal, Maximal) Let (X,≤) be a partial order. Suppose there exists l,m ∈ X such that
there exist no x ∈ X with x > l or m < x. Then l is a minimal element of X and m is a maximal element in X.

Definition 7.5 (Minimum, Maximum) Let (X,≤) be a chain. If there exist l,m ∈ X such that for all x ∈ X,
either l ≤ x or m ≥ x, then l is called a minimum, and m the maximum.

In these two definitions, it is important to emphasise that there can be ordered sets that can have a maximum
or maximal without a minimum or a minimal element. And conversely.

We make a connection now between these two types of elements.

Theorem 7.6 (Minimality in Chains) Let (X,≤) be a chain. Then:
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1. l is minimal if and only if l is the minimum

2. m is maximal if and only if m is the maximum

Proof Suppose that l is minimal. Then for all x ∈ X, we have x 6< a. But since we have a total order, this
implies x ≥ a.

Now for the converse, assume that l is minimum. But this implies that for all x ∈ X, x ≥ l, which implies that
there exist no x ∈ X such that x < l.

The proof is trivially similar for the maximal case. �

Definition 7.7 (Upper/Lower Bound) Let (X,≤) be a partially ordered set, and let A ⊆ X. Then, if for all
a ∈ A, there exist a u ∈ X such that a ≤ u, we say that u is an upper bound for A and that A is bounded
above. Similarly, if for all a ∈ A, there exists a l such that l ≤ a, then we say that l is a lower bound and that
A is bounded below.

A quick remark: a set may be bounded above, below, neither or both.

Definition 7.8 (Infimum, Supremum) Let (X,≤) a partially ordered set, and let E ⊆ X. Then let U be
the set of upper bounds on E and L be the set of lower bounds on E. If U attains a minimum, the we say
sup(E) = min(U) the supremum of E. If L attains a maximum, then we say inf(E) = max(L) the infimum of
E.

The following theorem, although trivial in proof, is an important result.

Theorem 7.9 Let (X,≤) be a partially ordered set, and E ⊆ X. Then:

1. If E attains a minimum l, then inf(E) = l.

2. If E attains a maximum m, then sup(E) = m.

And finally, we introduce the notion of comparability for arbitrary sets.

7.2 The Lemma

The proof is non-trivial. The proof here is an adaptation of the one presented in [3, §16] In order to make the
proof more tangible, we shall present a collection of lemmas and definitions. This may seem dry and abstract,
but the other approach - of present the proof in whole - is overwhelmingly confusing.

Lemma 7.10 Let (X,≤) be a partially ordered set. Define s : X → ℘ (℘ (X)) by s(x) = {z ∈ X : z ≤ x}. Let
(S = im (s) ,⊆) ordered by set inclusion. Then x ∈ X is maximal if and only if s(x) is maximal in S.

Proof Suppose that m ∈ X is maximal. Then, there is no x ∈ X such that x > m. Suppose that s(m) was
not maximal in S. Suppose s(m) ( s(x). But s(m) is a weak initial segment, which implies m ∈ s(m) and we
conclude that m < x, contradicting the maximality of m.

Now for the converse, assume that s(m) is maximal. That is, there is no s(x) such that s(m) ( s(x). If m was
not maximal in X, we find x > m, and trivially s(m) ( s(x) contradicting maximality of s(m). �

In the following definition, we have arbitrarily chosen its name for convenience.
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Definition 7.11 (Fairy Set) Let (X,≤) be a partially ordered set, and define X = {C ∈ ℘ (X) : C is a chain },
with (X,⊆) ordered by set inclusion. Then (X,⊆) is the Fairy Set of X.

Lemma 7.12 Let (X,≤) be a partially ordered set. Let (X,⊆) be the Fairy of X. Then if M ⊆ X is a chain in
X, then

⋃
M is a chain in X.

Proof Let x, y ∈
⋃

M. Then, there are elements Cx,Cy ∈M such that x ∈ Cx and y ∈ Cy. But by hypothesis,
we’ve ordered X by set inclusion and M is a chain. So, either Cx ⊆ Cy or Cy ⊆ Cx. Without loss of generality,
assume the latter. Then x, y ∈ Cx. But again, by hypothesis, Cx is a chain in X. It follows then that either
x ≤ y or y ≤ x. �

We introduce some new terminology.

Definition 7.13 (Adjunction Set) Let (X,≤) be a partially ordered set, and (X,⊆) the Fairy of X. Then for
any A ∈ ℘ (X), the set Â = {x ∈ X : A ∪ {x} ∈ X} is called the adjunction of A.

Definition 7.14 (Adjunction Function) Let (X,≤) be a partially ordered set and (X,⊆) the Fairy of X. We
denote the adjunction of A ∈ ℘ (X) by Â. Let c : ℘ (X) \∅→ X be a choice function. Define φ : X→ X by

φ(A) =

{
A ∪

{
c(Â \A)

}
, Â \A 6= ∅

A , Â \A = ∅

Lemma 7.15 Let (X,≤) be a partially ordered set with Fairy (X,⊆). Let φ : X→ X be the Adjunction function.
Then φ(A) = A ⇐⇒ A is maximal in X.

Proof Suppose that φ(A) = A. Then, Â\A = ∅. That is, x ∈ Â ⇐⇒ x ∈ A. Then we can find no x ∈ X \A
such that A ∪ {x} ∈ X. But that is exactly saying that for no x ∈ X \ A is A ∪ {x} a chain. It follows that A
is maximal in X.

Now assume that A is maximal in X. So, there exist no A′ ) A with A′ a chain in X. That is, there exist no
x ∈ X \ A such that A ∪ {x} ∈ X. It follows then that if x ∈ Â =⇒ x ∈ A. By construction of the Adjunct,
trivially A ⊆ Â. It follows that A = Â and Â \A = ∅. So, φ(A) = A. �

Definition 7.16 (Tower) Let (X,≤) be a partially ordered set, and let (X,⊆) be the Fairy of X. Let φ : X→ X

be the adjunction set function. Then if there exists a T ∈ X satisfying:

1. ∅ ∈ T

2. A ∈ T =⇒ φ(A) ∈ T

3. C ∈ T a chain in X =⇒
⋃

C ∈ T

Then T is a tower in X.

Definition 7.17 (Comparability) If (X,⊆) is a partial ordering, then C ∈ X is called comparable if for all
A ∈ X, either C ⊆ A or A ⊆ C.

Lemma 7.18 Let (X,≤) be a partially ordered set, with Fairy (X,⊆). Let M = {T ⊆ X : T is a tower }. Then
∅ 6= T0 =

⋂
C is a chain in X.
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Proof Observe that X is a tower itself, so M 6= ∅. Then, note that ∅ ∈ T for any tower T. It follows then that
T0 6= ∅.

Let A ∈ T0. Let φ : X→ X be the Adjunction function. Fix C ∈ T0, a comparable set. We note that comparable
sets exist in T0 The set ∅ ∈ T0 is an example.

Now, we prove: if A ∈ T0 and A ( C, then φ(A) ⊆ C. We know that C is comparable. So either φ(A) ⊆ C or
C ( φ(A). If the latter is true, then φ(A) \ A will differ by more than one element which is impossible by the
definition of the Adjunction function.

Consider the set U = {A ∈ T0 : A ⊆ C ∨ φ(C) ⊆ A}. It is obvious by construction that U is indeed a chain. We
claim that U is a tower.

Now trivially, ∅ ∈ T0. Let A ∈ T0. Consider φ(A). We split into three cases. Case 1: A ( C. But our previous
result gives us that φ(A) ⊆ C =⇒ φ(A) ∈ U. Case 2: A = C. Then, φ(A) = φ(C) =⇒ φ(C) ⊆ φ(A), and
it follows that φ(A) ∈ U. Case 3: φ(C) ⊆ A. Then since A ⊆ φ(A) =⇒ φ(A) ∈ U.

Now, let C ∈ U be a chain. So, for all A ∈ C, either A ⊆ C or φ(C) ⊆ A. If φ(C) ∈ C then we have φ(C) ∈
⋃

C.
If A ⊆ C =⇒ A ⊆ φ(C). Otherwise, consider when all A ∈ C implies A ⊆ C. Then,

⋃
C ⊆ C. In either case,

we have
⋃

C ∈ U.

By construction U ⊆ T0. But we must conclude U = T0 to avoid contradicting the minimality of T0. It follows
that T0 is indeed a chain in X. �

We present the celebrated Zorn’s Lemma.

Theorem 7.19 (Zorn’s Lemma) If (X,≤) is a partially ordered set in which every chain is bounded above,
then there exists a maximal element in X.

Proof Let s : X → ℘ (℘ (X)) be defined as the weak initial segment by x. By Lemma 7.10, m ∈ X maximal if
and only if s(m) maximal in (im (s) ,⊆).

Let (X,⊆) denote the Fairy of X. Note that for any C ∈ X, there exists an x ∈ X such that C ⊆ s(x). But
trivially, s(m) maximal in (im (s) ,⊆) if and only if s(m) maximal in (X,⊆).

In this construction, we can forget X altogether, and consider the problem of finding a maximal element in
(X,⊆). By Lemma 7.12, for a chain M ⊆ X,

⋃
M is an upper bound for M.

Let φ : X→ X denote the Adjunction function, and let T0 be the promised chain in X by Lemma 7.18. Trivially,
T0 is also a tower, so for any A,C ∈ T0 A ⊆ C =⇒ A ⊆ φ(C) or φ(C) ⊆ A.

Now consider the set U =
⋃

T0. By definition of φ, φ(U) ⊇ U. But for all A ∈ T0, A ⊆ U. So, either
A ( U =⇒ φ(U) ⊆ U (sub-result within Lemma 7.18) or A = U. In either case, φ(U) = U. By Lemma 7.15,
U is maximal. �

8 The Well Ordering Theorem

In this section, we prove the Well Ordering Theorem by applying Zorn’s Lemma (Theorem 7.19). Before we
begin to consider technicalities, we note that Zorn’s Lemma was formulated much after Zermelo’s proof of the
Well Ordering Theorem. The original proof directly involves the Choice Axiom. The original proof can be found
in [10, p183].

Preceding the proof, we shall present some definitions and theorems regarding well orderings.
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Definition 8.1 (Well Ordered Set) Let (W,≤) be a partially ordered set. Then if every subset of W attains a
minimum, we say that W is well ordered.

In the light of this definition we highlight a simple, yet insightful result.

Theorem 8.2 Every well ordered set is a chain.

Proof Let W be a well ordered set. Then for any x, y ∈ W , we the set {x, y} ⊆ W . But then either x or y is
the minimum. That is exactly, x ≤ y or y ≤ x. �

Definition 8.3 (Continuation) Let (A,≤) and (B,≤) be well ordered sets, such that A ⊆ B. Then if A is an
initial segment of B, we say that B is a continuation of A and write A b B.

We present some important auxiliary results regarding continuations in order to prove the Well Ordering Theorem.

Lemma 8.4 Let (C,b) be a chain of well ordered sets ordered by continuation. Then each A ∈ C has the same
minimum.

Proof Assume the converse is true. Let B ∈ C and let mB be minimum of B. Let A ∈ C with B b A with a
minimum mA 6= mB . Such a set must exist, otherwise the result is trivial. By continuation hypothesis, there
exists an b ∈ A such that B = s(b).

Now, either mB < mA or mB > mA by Theorem 8.2. Note that mB < mA =⇒ B 6⊆ A. Otherwise
mB > mA =⇒ s(B) 6= B. In either case, we have a contradiction, and the result follows. �

Lemma 8.5 Let (C,b) a chain of well ordered sets ordered by continuation. Then
⋃

C is an upper bound for C.

Proof For every A ∈ C, we construct A′ = {(x, y) : x ≤ y ∈ A} (we have this automatically by definition, but
we do this for emphasis). Now, let C′ be the collection of all A′. By Lemma 8.4, let m be the minimum of each
A ∈ C.

Now, consider
⋃

C′. Then (m, y) ∈
⋃

C′, for all y ∈
⋃

C. If (m′,m) ∈
⋃

C′ with m 6= m′, then there exists
some B ∈ C with minimum m′ ∈ B with m′ < m. But this is impossible by Lemma 8.4.

Then, given any A ∈ C, either A =
⋃

C or there exists a B ∈ C such that A b B. In the former case, we’re
done - nothing to prove. In the latter case, there must exist a b ∈ B ∈

⋃
C such that s(b) = A ⇐⇒ s′(b) =

A′ = {(x, y) : x < y < b} ∈ C′. So,
⋃

C′ gives the required well ordering for
⋃

C, and for all A ∈ C such that
A 6=

⋃
C, A b

⋃
C. �

Now we present the celebrated result. It has been adapted from [3, p69].

Theorem 8.6 (The Well Ordering Theorem) Every set can be Well Ordered.

Proof Let X be a set, and let W be a collection of well ordered subsets of X. Now, W 6= 0 since ∅ ∈W or if
X 6= ∅, for any x ∈ X, {x} ∈W. We order W by continuation.

Now, for any chain C ⊆W,
⋃

C is an upper bound for C. We apply Zorn’s Lemma (Theorem 7.19), and find a
maximal well ordered set W ⊆ X.

Our claim is that W = X. Suppose this is not true. Then, X \W 6= ∅. Take any z ∈ X \W , and construct
W ′ = W ∪ {z}. We order W ′ by x ≤ y if x ≤ y ∈W . For all x ∈W , we set x < z. Then W ′ is a well ordered
set, W bW ′ and W ′ ∈W. But this contradicts the maximality of W . �
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We shall emphasise that this theorem does not guarantee anything about an order structure which may pre-exist
in the set. In fact, the well ordering may be quite different to the usual ordering of a set. For instance, consider
the real numbers R. Surely, R under its usual ordering is not a well ordering. The well ordering theorem simply
states that we can find an ordering for R such that it is a well ordering.

Theorem 8.7 Well Ordering Theorem (Theorem 8.6) =⇒ Choice Axiom (Axiom 9)

Proof We show that Theorem 8.6 implies Theorem 6.2. Then, by Corollary 6.3, we obtain the desired result.

Let C be a family of nonempty sets indexed by Φ. We well order each XΦ ∈ C. The, we define the function
c : C→

⋃
C:

c(Xα) = min(Xα)

Now, c is defined since we well order each Xα. Trivially, for every α ∈ Φ, c(Xα) ∈ Xα. This is the desired choice
function. �

Now we come to a hallmark result, which illustrates how the process of making arbitrary choice are linked to
maximality and order.

Corollary 8.8 (Equivalence of Choice, Zorn, and Well Ordering) The following are equivalent:

1. The Axiom of Choice (Axiom 9)

2. Zorn’s Lemma (Theorem 7.19)

3. Well Ordering Theorem (Theorem 8.6)

Proof Trivially, Theorem 7.19 shows that the Choice Axiom implies Zorn’s Lemma. Then Theorem 8.6 shows
that Zorn’s Lemma implies Well Ordering Theorem. Then Theorem 8.7 shows that the Well Ordering Theorem
implies the Choice Axiom. �

9 The Transfinite

One of the most fantastic aspects of well ordered sets is the fact that they resemble the structure of the natural
numbers. Although this resemblance is not exact, it is sufficient to generalise some of the most wonderful facts
about the natural numbers. The most natural starting place is to extend the process of mathematical induction
to well ordered sets - which by the Well Ordering Theorem - is any set.

We shall also briefly look at extending the process of counting using well orderings. Disclaimer: The detailed
examination of such a theory is beyond the scope of this essay. Our discussion will be informal, and rarely shall
we provide proof.

9.1 Transfinite Induction and Recursion

We state and prove the Principle of Transfinite Induction.

Theorem 9.1 (Principle of Transfinite Induction) Let (X,≤) be a well ordered set, and let S ⊆ X. Then if
for all x ∈ X, s(x) ⊆ X =⇒ x ∈ S, then S = X.
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Proof Suppose S 6= X. So, X \S 6= ∅. Then take the m = min(X \S). We have that s(m) ⊆ S =⇒ m ∈ S.
But by construction m ∈ X \ S, which is a contradiction. �

There are two points to emphasise here. Firstly, there is no starting element. But given (X,≤) a well ordered
set with a minimum m and a set S as in the hypothesis of Theorem 9.1. Then s(m) = ∅ and ∅ ⊆ S from
Theorem 2.7, which implies that m ∈ S by hypothesis. In other words, our formulation gives us the initial
element in S for free. Secondly, rather than jumping from a predecessor to a successor, we jump from a set of
predecessors to successors. This highlights one of the differences of arbitrary well ordered sets and the natural
numbers. Every natural number has a predecessor, whereas elements of well ordered sets need not necessarily
attain a strict predecessor.

The following result tells us that the Principle of Transfinite Induction is indeed a generalisation of Induction.
That is, they are both equivalent on ω.

Theorem 9.2 Transfinite Induction on ω ⇐⇒ (Finite) Induction

Proof Let S ⊂ ω such that the Transfinite Hypothesis holds. Then, s(0) = ∅ =⇒ 0 ∈ S. Also, let
s(x+) ⊆ S =⇒ x+ ∈ S. But s(x+) ⊆ S ⇐⇒ x ∈ s(x+). So, x ∈ S =⇒ x+ ∈ S and we have S = ω.

Now we prove the converse. Suppose the Induction hypothesis holds. Fix y ∈ S =⇒ y+ ∈ S. Consider the set
s(y+). Trivially, by the Induction hypothesis, 0 ∈ s(y+) and in general we have for all x ≤ y =⇒ x+ ∈ S. So,
s(y+) ⊆ S ⇐⇒ y ∈ S =⇒ y+ ∈ S. Since Induction holds, S = ω and we’re done. �

As we were able to define functions using the process of Induction, we show a similar theorem in the light of
Transfinite Induction. First, we introduce some language to express our theorem.

Definition 9.3 (Sequence of type a) Let (W,≤) be a well ordered set, and X an arbitrary set. Then for any
a, a function fa : s(a)→ X is called a sequence of type a.

Definition 9.4 (Sequence function of type W in X) Let (W,≤) be a well ordered set and X an obituary
set. Let U = {fa : s(a)→ X : ∀a ∈W}. If there exists a f : U→ X, then f is called a sequence of type W in
X.

These definitions may seem rather obscure. We state them for rigour. Informally speaking, sequence functions
tell us how to extend a sequence [3, p70].

We now state the Transfinite Recursion Theorem. We only prove uniqueness. The existence proof is a long and
tedious construction of the function as a set of ordered pairs. The proof is explored in [3, p71].

Theorem 9.5 (Transfinite Recursion Theorem) Let (W,≤) be a well ordered set, X some arbitrary set, and
f a sequence of type W in X. Then there exists a unique u : W → X such that u(a) = f(u|s(a)).

Proof We show that u is unique, so assume u exists. Let S =
{
a ∈W : u|s(a) is unique

}
. We note that

S 6= ∅, since m ∈ S for m = min(W ). Trivially, whenever s(a) ⊆ S, u|s(a) unique, and it follows that a ∈ S.
By Transfinite Induction (Theorem 9.1), S = W , and we conclude u : W → X is unique. �

9.2 Ordinals

We have mentioned before that we would in fact like to extend the process of counting beyond the natural
numbers. But what exactly does this mean? Cantor’s work revealed that we can in a sense “measure” sizes of
infinity. That is to say, we can generalise what it means for two sets to contain the same “number” of elements
to infinite sets. The motivation in this section is to investigate how to give meaning to this notion of “number.”
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Definition 9.6 (Similarity) Let (X,≤X) and (Y,≤Y ) be two partially ordered sets. Then if there exists a
bijection f : X → Y such that x ≤X y ⇐⇒ f(x) ≤Y f(y), then we say that X is similar to Y , and write
X ' Y . We call f a similarity.

Although we’ve stated this definition in general for partially ordered sets, its importance becomes apparent when
we consider well ordered sets. We state without proof, the following startling result. The proof can be found
in [3, p73].

Theorem 9.7 (Comparability Theorem for Well Ordered Sets) Let (X,≤X) and (Y,≤Y ) be well ordered
sets. Then only one of the following are true:

1. X ' Y

2. X ' s(a) for some a ∈ Y

3. Y ' s(b) for some b ∈ X.

In the light of our present language, we can observe that the crucial factor in characterising natural numbers was
that every n ∈ ω contains all its predecessors. This can be used to motivate the definition of an ordinal number.

Definition 9.8 (Ordinal Number) Suppose α is a well ordered set such that for every element ξ ∈ α, s(ξ) = ξ.
Then α is an ordinal number.

Trivially, we can see that all natural numbers are ordinal numbers. But consider the set ω itself. This is certainly
a well ordered set, and given any n ∈ ω, s(n) = n. So, ω itself is an ordinal number. We characterise this in the
following definition.

Definition 9.9 (Finite/Infinite Ordinal Numbers) If α is an ordinal number and α ∈ ω, then we say that α
is finite. Otherwise, α is infinite.

How do we know that there are in fact ordinal numbers other than ω? The question has an easy answer. We can
consider taking ω+ = ω ∪ {ω}. We can order ω+ by keeping the usual order when m,n ∈ ω and for all n ∈ ω,
we write n < ω. Certainly, this is a well ordering and ω+ is an ordinal. We shall write ω + n for the number
constructed by taking n successors.

Now for another question: We required the Infinity Axiom (Axiom 7) to guarantee that the set of all natural
numbers are in fact a set. Can we be guaranteed that all successors of ω is indeed a set? The question has an
easy answer, and for the first time, we use the full strength of the Replacement Axiom (Axiom 2). Consider the
sentence S(n, p) = “n ∈ ω∧p = ω+n”. Then, the axiom guarantees us that the collection ω′ = {p : p = ω + n}
is indeed a set. Then again, we can start with ω′∪ω, and take successors, and continue this process ad infinitum.
The following result should become more accessible in the light of this discussion.

Theorem 9.10 (Burali-Forti Paradox) There exists no set that contains all ordinals numbers.

We know that every natural number is comparable, and this motivated our definition of order. It is not unusual
to attempt to do the same with ordinals - for we know that they are structurally somewhat similar to their natural
counterparts. We quote the following result to motivate our definition. The proof is application of Theorem 9.7.

Theorem 9.11 (Properties of Ordinal Numbers) Let α, β be ordinal numbers. Then, either α ∈ β, α = β
or β ∈ α.

This motivates our definition:
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Definition 9.12 (Ordinal Order) Let α, β be ordinal numbers. We say that the ordinal α < β if α ∈ β.

By The Comparability Theorem for Ordinals (Theorem 9.7), we know that we can associate with every well
ordered set a ordinal number. Further, we can show that this is unique. However, we interrupt our development
of ordinals as a consequence of the following problem: If two sets are equivalent, can we associate the same
ordinal number to them? It is shocking to know that we cannot! Consider the set ω+. Clearly, the function
f : ω → ω+ defined by f(0) = ω, f(n+) = n is a bijection. But by construction, we know that ω 6' ω+, which
implies that they do not have the same ordinality.

In fact, this should not come as a surprise. The Comparability Theorem talks in the language of similarities, not
equivalences. The problem is that similarities concern themselves too much with the underlying order structure,
when, for our purposes, it really should be ignored.

9.3 Comparability and Countability

In order to associate two sets that are equivalent the same number, we need to somehow look at building our
theory from equivalences. We begin with a new definition.

Definition 9.13 (Set Dominance) Let X and Y be sets. We say that Y dominates X if there exists an
injection f : X → Y . We write X - Y . If X 6∼ Y we say that Y strictly dominates X and write X ≺ Y .

We have the following two useful results:

Theorem 9.14 Set Dominance is an order relation.

Theorem 9.15 (Comparability Theorem for Sets) For any two sets X,Y , either X - Y , or X = Y or
Y - X.

Now we shall classify the “smallest” of infinities.

Definition 9.16 (Countable/Uncountable) Let X be a set. If X - ω, then X is countable. If X ∼ ω, we say
it is countably infinite. Otherwise we say X is uncountable.

We know that there exist sets that are countable. Surely ω itself is such a set. But for a non-trivial example,
consider the set E = {2n ∈ ω : n ∈ ω}. Certainly f(n) = 2n between E and ω. But the question remains: are
there sets which are uncountable? This famous theorem provides an answer.

Theorem 9.17 (Cantor Theorem) Let X be a set. Then X ≺ ℘ (X).

Proof Suppose there exists a bijection f : X → ℘ (X). Then consider the set S = {x ∈ X : x 6∈ f(x)}. Now,
trivially, S ∈ ℘ (X). So, there exist some s ∈ X such that f(s) = S. Now, if s ∈ S, then s 6∈ f(s) = S. And if
s 6∈ S, then s ∈ f(s) = S. Either way, we get a contradiction and the result follows. �

The importance of this result should not require any further validation. But we shall soon see how the theory of
cardinal numbers certainly celebrates it.
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9.4 Cardinals

Our discussion of ordinal numbers was not a wasteful effort to demonstrate that we can construct weird numbers
that measure infinities. They are convenient because the essence which we seek - the notion of equivalence - is
hidden somewhere in the wide ocean of ordinals. The whole ocean, it seems, is too numerous. So we consider
the better behaved ones which suit our purposes.

Theorem 9.11 tells us that ordinals are always comparable. It follows from the fact: that every element of an
ordinal is itself an initial segment, that any set of ordinals is well ordered. This is crucial to make the following
definition valid. Also note that the collection we form is indeed a set - the collection of all well orderings of a
set X is a subset of ℘ (℘ (X ×X)) and it follows that it is indeed a set. With each such well ordering, we can
associate a unique ordinal number, and by using the strength of Replacement (Axiom 2), we are guaranteed that
collection we are about to describe is indeed a set.

Definition 9.18 (Cardinal Number) Let X be a set, and let S = {α : α ∼ X}. Then we write card (X) =
min(S), the cardinality or cardinal number of X.

We have seen and encountered one infinite cardinal number already. This is ω, and was the motivation behind
our definition of Countability. In the presence of the language we’ve developed, we can say that a set X is
countable infinite if card (X) = ω. It also happens that ω is the smallest infinite cardinal, since by the very
characterisation of infinite, if n < ω, then n is finite.

How can we give meaning to addition and multiplication of cardinals? The answer is elegant. We can define
the sum of two cardinal numbers by considering the union of two disjoint sets of the corresponding cardinality.
Then the cardinal sum is the cardinality of the resulting set. Then products follow from by considering Cartesian
products. A deeper discussion of cardinal numbers can be found in [4, p28].

Cardinal numbers are either finite or infinite. We have briefly and informally discussed that ω is the first infinite
cardinal number. Now, card (℘ (ω)) 6= ω by Cantor’s Theorem (Theorem 9.17). We call the first infinite cardinal
number ℵ0 = ω. Then we list the subsequent cardinals ℵ1,ℵ2, . . . - the infinity of infinities.

The assertion ℵ1 = card (℘ (ℵ0)) is known as the Continuum Hypothesis and was formulated by Cantor [2, p2]
who searched unsuccessfully for a proof. The Generalised Continuum Hypothesis states that ℵn+ = card (℘ (ℵn)).

Along with the independence of the Axiom of Choice, Kurt Gödel also proved that the Generalised Continuum
Hypothesis was consistent with the Axioms of Set Theory. In 1963, Paul Cohen established the independence of
the Continuum Hypothesis [6, p3]. Conclusion: no proof exists.

These theories lie at the heart of modern mathematics. They have been the work of many brilliant and wonderful
minds. The consequences of these theories are still not complete, and they may never will be. Mathematics does
indeed seem infinite. We bring our discussion to an end by quoting David Hilbert - “No one shall expel us from
the paradise that Cantor has created for us.”
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