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1 Motivation

Any honest attempt to navigate and understand the world, both in the large and in
the small, is met with fierce resistance by the presence of boundary value problems.
As they lived out their lives, even the earliest humans could not avoid cliffs, shores,
and other interfaces. All of these are examples of boundaries. The modern world
demands that we rigorously understand natural phenomena through their descrip-
tion by partial differential equations. Almost always, the setting is a bounded region
within a geometric structure.

The aims of this book is to give a modern mathematical treatment of the linear
and elliptic aspects of this subject. Although relevant to the study of physical
phenomena, the narration of this topic will be motivated by perspectives emerging
from global analysis. The setting is elliptic differential operators acting on Hermitian
vector bundles over measured manifolds. A description of the maximal domain of
such an operator will be given in terms of a canonical operator built out of the
boundary trace map. Rather than focus on particular boundary conditions, all
possible boundary conditions described from a fundamental space on the boundary
called the Czech space.

Although we commence with a description of general-order operators, we will focus
our attention on first-order elliptic differential operators. An important objective of
this book is to exposit the recent developments due to Bär-Bandara in this setting.
The ability to characterise the toplogy of the Czech space via spectral projectors
associated to an adapted operator on the boundary lies at the heart of the the-
ory. Moreover, a graphical characterisation of elliptic boundary conditions will be
demonstrated. As an application, a quick and conceptual proof of the relative index
theorem of Gromov-Lawson will be given.

The book will ultimately focus on Dirac-type operators. It will culminate with the
proof of the famed index theorem of Atiyah-Patodi-Singer. Applications of this
theorem, including consequences to the study of positive scalar curvature metrics,
will also be considered.





2 Preliminaries

2.1 Manifolds with boundary

Manifolds with boundary are the core objects which will lie at the heart of our con-
siderations. The purpose of this section is simply to define and recall the necessary
features of these objects. For a more in depth description, see [36] by Lee or [41] by
Munkres.

In time, we will need to study differential operators on manifolds with boundary.
Therefore, we require their differentiable structures to be ‘smooth’ in an appropriate
sense. This is the content of the following definition.

Definition 2.1 (Generalised smoothness). Consider an arbitrary subset Ω ⊂
Rn. Then f : Ω → Rn is smooth (resp. Ck) iff for all p ∈ Ω and every open
neighbourhood Up ⊂ Rn of p there is a smooth (resp. Ck) extension fUp : Up → Rn

of f |Ω∩Up
.

We will consider the half-space Rn
+ := {x ∈ Rn | xn ≥ 0}.

Definition 2.2. Let M be a second-countable Hausdorff space.

We consider pairs (U, ψ) where U ⊂ M is an open set and ψ : U → Rn
+ is a

homeomorphism to its image ψ(U) which is open in Rn
+.

A collection A of such pairs is called an atlas if they are compatible and cover M ,
i.e. if for any (U, ψU), (V, ψV ) ∈ A the transition map

ψU ◦ ψ−1
V : ψV (U ∩ V ) → ψU(U ∩ V )



10 2 Preliminaries

is smooth (in the generalised sense as above), and
⋃

(U,ψ)∈A U = M . An atlas is
called maximal if it is maximal with these properties.

The choice of a maximal atlas Amax makes M a smooth n-manifold with boundary.
Any (U, ψ) ∈ Amax is then called a chart of M , namely an interior chart if ψ(U)
is open in Rn or a boundary chart if ψ(U) is open in Rn

+ and not in Rn.

The set M̊ of all points p ∈ M for which there is an interior chart (U, ψ) with
p ∈ U is called the interior of M . The set ∂M := M \ M̊ is called the boundary
of M .

Recall that a manifold in the ordinary sense is a space that is modelled on Rn. This
is captured by the fact that there, charts ψ : U → Rn are asked to be homeomor-
phisms to their image that is open in Rn. Taking that point of view here, we can
see that a manifold with boundary is modelled on Rn

+. With that said, we note
that equivalently, we could have instead asked for our maps ψ : U → Rn to be
homeomorphisms to their image but ψ(U) open in either Rn or Rn

+. This is more
convenient to work with given that then for an open subset Ω ⊂ Rn which is a
manifold with smooth boundary, the map (Ω, id) is a chart.

The following are some important facts about manifolds with boundary, which are
readily verified.

Proposition 2.3. For an n-manifold with boundary M , the following hold:

• M̊ is an n-manifold without boundary,

• ∂M is an (n− 1)-manifold without boundary,

• M = M̊ t ∂M (disjoint union).

Example 2.4. 1. A manifold without boundary M is a manifold with boundary
∂M = ∅.



2.2 Vector bundles 11

2. The unit ballD := B(0, 1) = {x ∈ Rn | |x|Rn ≤ 1} is a manifold with boundary
∂D = Sn−1 = {x ∈ Rn | |x|Rn = 1} and interior D̊ = B(0, 1).

3. If N is a manifold without boundary, then M := [0,∞)×N is a manifold with
boundary ∂M = {0} ×M and M̊ = (0,∞)×N .

4. Non-example: If M := Q where Q is the unit cube, endowed with the differ-
entiable structure induced from its embedding into Rn, then the topological
boundary ∂Q is not smooth. Therefore, it is not a smooth manifold with
boundary.

In order to consider derivatives in the direction towards the boundary from the
interior, we need know there is a special class of vectorfields on the boundary in the
relevant direction. The following notion captures this.

Definition 2.5 (T transversal/inward/outward pointing). A vector field
along the boundary T ∈ C∞

(
∂M, TM |∂M

)
is called transversal if it does not

take values in T∂M , i.e. if for every chart (U, ψ) and every x ∈ U ∩ ∂M we have
((ψ∗T )(x))n 6= 0, i.e. (dψ ◦ T )(x) /∈ ∂Rn

+. A transversal T is inward or outward
pointing if

((ψ∗T )(x))n > 0 or ((ψ∗T )(x))n < 0 ,

respectively.

Proposition 2.6. On a manifold with boundary, there always exists a smooth
inward or outward pointing vectorfield.

2.2 Vector bundles

In the analysis of differential operators in Euclidean settings, it is often to consider
systems, i.e., functions f : Rn → CN , where N can be different from n. For instance,
the reduction of higher order differential equations to first order typically requires
a factorisation, and that entails that the dimension N will typically be much larger
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than n. Vector bundles are, in a phrase, ‘systems in the presence of geometry’. In
this section, we recall their description and salient features required in later parts.

Let the field K be either R or C, although in practice, we almost always exclusively
work with K = C.

Definition 2.7. E is a vector bundle over M (write E →M) of rank N iff

• E is a topological space,

• there is a continuous surjection π : E →M ,

• for every x ∈M the fibre Ex := π−1(x) is an N -dimensional K-vector space,

• for every x ∈ M there is an open neighbourhood Ux ⊂ M of x and a
diffeomorphism Ψx : π

−1(Ux) → Ux ×KN s.t. for every y ∈ Ux we have

(I) Ψx(Ey) = {y} ×KN , and

(II) Ψx|Ey
: Ey → {y} ×KN is a vector space isomorphism.

We call these (Ux,Ψx) local trivialisations.

When (U, ψ) is a chart for M and simultaneously (U,Ψ) is a local trivialisation,
then we call (U, ψ) or more precisely (U, ψ,Ψ) a trivialising chart for E or simply
a trivialising chart when E is clear from context.

A vector bundle E →M which is diffeomorphic to M ×KN is called trivial.

Example 2.8. 1. Let (U, ψ) be a local trivialisation of a vector bundle E →M .
Then the bundle E|U := π−1(U) → U is trivial, so every vector bundle is
locally trivial motivating the name ‘local trivialisation’.

2. E :=M × CN is trivial and of complex rank N .
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3. E := TM or T ∗M is a vector bundle of real rank n. These are not trivial in
general, e.g. TS2 is not trivial.

4. Given an R-vector bundle E →M , its complexification EC with fibres (EC)x =
Ex ⊗R C is a C-vector bundle.

5. E := T (p,q)M is the (p, q)-tensor bundle.

6. E := ΛM =
⊕n

p=0 Λ
pM is the bundle of differential forms.

7. For a vector bundle E →M of rank N , we consider the vector bundle E|∂M →
∂M , which is also of rank N .

8. Given a transversal T ∈ C∞(∂M, TM |∂M), we obtain a splitting

TM |∂M = T∂M ⊕ span{T} ,

where span{T} is understood to be the bundle with fibres span{T}x := span{Tx}.
When g is a Riemannian metric, T can be obtained orthogonal to T∂M and
is then called a normal vector field. In this case, we call N∂M := span{T}
the normal bundle. It is easy to see that this is a trivial line bundle.

9. The fibres of the dual bundle E∗ are the dual spaces of the fibres of E.

2.3 Function spaces

Let E →M and let U ⊂M open or U ⊂ ∂M open. By Ck(U,E) we denote the set
of Ck-sections of the bundle E|U → U , i.e. the Ck-functions ϕ : U → E satisfying
π ◦ ϕ = idU .

Then

Ck
c(M,E) :=

{
ϕ ∈ Ck(U,E)

∣∣ spt(ϕ) is compact
}

,

Ck
cc(M,E) :=

{
ϕ ∈ Ck

c(U,E)
∣∣∣ spt(ϕ) ⊂ M̊

}
.

In other words, a general φ ∈ Ck
c(U,E) might satisfy sptφ ∩ ∂M 6= ∅. In contrast,

ψ ∈ Ck
cc(U,E) always satisfies sptψ ∩ ∂M = ∅.
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If E := M × R is the trivial line bundle, we write Ck(U) := Ck(U,E) and similarly
for the other function spaces.

2.4 Riemannian and Hermitian structures

For an R-vector bundle E →M , a section h ∈ C∞(M,E∗ ⊗ E∗) which for all x ∈M
satisfies h(x)[u, v] = h(x)[v, u] for all u, v ∈ Ex and h(x)[u, u] > 0 for all u ∈ Ex\{0}
is called a Riemannian structure/metric on E.

Similarly, for a C-vector bundle E →M , a section h ∈ C∞(M,E∗ ⊗R E
∗) which for

all x ∈ M satisfies h(x)[u, v] = h(x)[v, u] for all u, v ∈ Ex and h(x)[u, u] > 0 for all
u ∈ Ex \ {0} is called Hermitian structure/metric on E.

When the field is clear from context, we say that h is a metric on E.

Definition 2.9. For x ∈M and u ∈ Ex we set |u|h(x) :=
√
h(x)[u, u].

Example 2.10. 1. E := M × CN , h(x)[u, v] = u · v̄ or h(x)[u, v] = ξ(x)u · v̄ for
ξ > 0.

2. A Riemannian metric g on TM induces Riemannian structures on T ∗M ,
T (p,q)M , ΛM , etc., and g|N∂M is a metric on N∂M .

2.5 Measures and integration

The locally Euclidean nature of a manifold not only affords it with a differentiable
structure, it also carries a canonical measure structure. By this, we mean that
notions of objects being measurable as well as the notion of sets of zero measure
could be understood without alluding to a fixed reference measure. As we shall
see later, these notions agree with the induced notions when we have an induced
measure from a sufficiently wide class of geometric structures on a manifold. The
approach we take here is to consider measures induced from sections of a certain
vector bundle called the density bundle. This is a more convenient object in the
context of manifolds with boundary since a density on the manifold induces a density
on the boundary on choosing an inward or outward pointing vectorfield.

Definition 2.11. • Let (U, ψ) be a chart. Then the pullback Lebesgue mea-
sure dψ∗L of the Lebesgue measure dL on U is defined by requiring∫

U

f dψ∗L :=

∫
ψ(U)

(
f ◦ ψ−1

)
dL .

for every integrable f : U → R.

• A ⊂M is called measurable if A∩U is dψ∗L -measurable in all charts (U, ψ).
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• A ⊂ M is said to be of null measure or a null set if dψ∗L (A ∩ U) = 0 for
every chart (U, ψ).

The measurable and null sets generate a σ-algebra. This is readily verified by fixing
any smooth Riemannian metric g on M and then verifying that the dµg-measurable
sets and dµg-zero measure sets, where dµg is the induced measure, are respectively
measurable and null in this sense. In particular, this allows us to consider measurable
sections of E → M without first having to fix a reference measure. We denote this
set of sections by MeasSect(M,E). Details regarding these facts can be found in [8].

Consider the intersection W := V1 ∩ V2 of two charts (V1, ψ1) and (V2, ψ2) with
coordinates x = ψ1 and y = ψ2.

Let F : ψ1(W ) → ψ2(W ) be a diffeomorphism between open sets of Rn and ξ :M →
R with spt(ξ) ⊂ W . Then∫

ψ2(W )

(
ξ ◦ ψ−1

2

)
(y) dL (y) =

∫
ψ1(W )

(
ξ ◦ ψ−1

1

)
|DF (x)| dL (x) ,

where ψ2(W ) = F (ψ1(W )), and |DF (x)| :=
∣∣∣∣det(( ∂yi∂xj

)
i,j

)∣∣∣∣.
Concern 1: We require a geometric gadget to account for the factor det(DF ) in
such coordinate transformations.

Concern 2: Given a measure dµ on M , how do we get from it a measure dν on
∂M?

The goal of this section would be to construct a certain vector bundle which will
allow us to simultaneously address both concerns.

Let W be a finite dimensional R-vector space.
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Definition 2.12. A map ξ : W n → R is called a density on W if

ξ(Tw1, . . . , Twn) = |det(T )|ξ(w1, . . . , wn)

for all T : W → W linear and wi ∈ W .

Then |Λ|W := {ξ : W n → R | ξ is a density on W}.

Proposition 2.13. We have the following properties.

I) The set |Λ|W is an R-vector space.

II) Let ξ1, ξ2 ∈ |Λ|W and ξ1(e1, . . . , en) = ξ2(e1, . . . , en) for a basis {ei} of W .
Then ξ1 = ξ2.

III) Let ω ∈ ΛnW and set |ω|(x1, . . . , xn) := |ω(x1, . . . , xn)|. Then |ω| ∈ |Λ|W .

IV) The vector space |Λ|W is 1-dimensional and |Λ|W = span{|ω|} for all ω ∈
ΛnW \ {0}.

Proof. Left as an exercise.

Definition 2.14 (Density bundle). As a set, define

|Λ|M := {(p, ξ) | p ∈M, ξ ∈ |Λ|TpM} .

To make it a bundle we need trivialisations. In a chart U with coordinates x define

ΦU : π−1(U) → U × R

by
ΦU(c|ω(p)|) := (p, c) ,

where c ∈ R and ω(p) = dx1|p ∧ · · · ∧ dxn|p.

Then in charts U1 and U2 with coordinates x and y, respectively, we get

(
ΦU1 ◦ Φ−1

U2

)
(p, 1) =

(
p, det

(
∂yi

∂xi

∣∣∣∣
p

))
.

Remark 2.15. The density bundle |Λ|M cannot be identified with the forms
ΛnM unless M is orientable.

Definition 2.16. A density µ ∈ C∞(M, |Λ|M) is said to be positive if for all
p ∈M and all bases {ei} of TpM we have µ(p)(e1, . . . , en) > 0.
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Denote the positive densities by |Λ|+M .

Let f : M → R be a measurable function with spt(f) ⊂ U for a chart (U, ψ) with
coordinates x = ψ. Write ψ∗µ =: µψ|dx1 ∧ · · · ∧ dxn| and define∫

U

f dµ :=

∫
ψ(U)

(
f ◦ ψ−1

)
µψ dL .

Consider a diffeomorphism F : M → M̃ and µ̃ ∈ C∞
(
M̃, |Λ|M̃

)
. Set µ := F ∗µ̃ ∈

C∞(M, |Λ|M), where

F ∗µ̃(w1, . . . , wn) := (µ̃ ◦ F )(F∗w1, . . . , F∗wn) .

Write µ̃ =: ũ|dx1 ∧ · · · ∧ dxn|, then

F ∗µ̃ = (ũ ◦ F )|detDF (y)|
∣∣dy1 ∧ · · · ∧ dyn

∣∣ .
This shows that the definition we have made above is well-defined on overlaps.

For general f : M → R let C := {(Ui, ψi)} be a countable cover of M and {ηi} a
smooth partition of unity subordinate to C .

Define the Radon measure dµ on M by∫
M

f dµ :=
∞∑
i=1

∫
Ui

(fηi) dµ .

Exercise 2.17. • Verify independence of the choice of cover and partition of
unity.

• dµ-measurable and dµ-null agree with measurable and null w.r.t. the density
µ.

• Verify that the induced measure is, in fact, a Radon measure.

As a consequence of this construction, we often regard the induced measure dµ from
a density µ and the density itself as the same object.

Definition 2.18 (Measured manifold (M,µ)). A measured manifold is a
smooth n-manifold M with boundary along with µ ∈ C∞(|Λ|+M).

2.6 Induced measure on ∂M

Fix a positive density µ ∈ C∞(M, |Λ|+M
)

and an inward pointing T ∈ C∞
(
∂M, TM |∂M

)
.

Then we define a positive density ν ∈ C∞(∂M, |Λ|+∂M
)

on the boundary by

ν(x)(w1, . . . , wn−1) := µ(x)(T (x), w1, . . . , wn−1)
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for wi ∈ Tx∂M .

Remark 2.19. Let dµ be a Radon measure s.t. the notions dµ-null and dµ-
measurable agree with our notions from Definition 2.11. Inside a chart (U, ψ)
consider the Radon-Nikodym derivative

x 7→ dµ

dψ∗L
(x) ∈ C∞(U) .

Then µ := dµ
dψ∗L

|dx1 ∧ · · · ∧ dxn| defines a µ ∈ C∞(M, |Λ|+M
)
.

This shows that we could have equally well begun our discussion with such Radon
measures and then attempted to extract the induced measure on the boundary
given an inward pointing vectorfield. However, it is unclear the way in which to
do this elegantly without an excursion through the density bundle.

2.7 Banach spaces

As in Euclidean analysis, for a systematic study of boundary value problems, we
are forced to consider induced function spaces beyond the smooth context. These
function spaces naturally emerge from underlying geometric considerations. In ap-
plication, we will only deal with Hilbert spaces. However, the problems we will
encounter will force us off the well trodden path of analysis exploiting the natural
Hilbert structure and orthogonal reasoning. Despite considering only Hilbert spaces,
our methods will be closer to general Banach space analysis. Therefore, we will con-
sider the Banach setting to the extent required and possible, and later, specialise to
the Hilbert space setting. The ideas we discuss in this section is explored in great
depth in [52] by Yosida and [33] by Kato.

Let B be a K-vector space, K = R or C (typically C). Let ‖·‖ : B → R+ be a norm
on B, which induces a metric by (x, y) 7→ ‖x− y‖. Then (B, ‖·‖) is a Banach space
if it is a complete metric space. H := B is a Hilbert space, if ‖·, ·‖ polarises, meaning
‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. In this case it induces an inner product by

〈x, y〉 := 1

4

(
‖x+ y‖2 − ‖x− y‖2 − i‖x+ iy‖2 + i‖x− iy‖2︸ ︷︷ ︸

omitted if K=R

)
,

which then satisfies 〈x, x〉 = ‖x‖2. In the case K = C, the adjoint space of B is

B∗ := {ϕ : B → K | ϕ is conjugate linear and continuous} ,

we equip it with the norm ‖·‖B∗ given by

‖ϕ‖B∗ := sup
∥x∥B=1

|ϕ(x)| .

The dual space of B is

B′ := {ϕ : B → K | ϕ is linear and continuous} .
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We have B∗ ∼= B′ by u 7→ ū.

The bi-adjoint space is the space is B∗∗ := (B∗)∗.

The evaluation functional ev : B → B∗∗ is defined by ev(x)[f ] := f(x). It is easy
to see that its range is a closed subspace of B∗∗. B is said to be reflexive if ev is an
isomorphism.

Definition 2.20. Fix a density µ ∈ C∞(M, |Λ|+M
)
. Let E → M be a K-vector

bundle and h a metric on E.

For p ∈ [1,∞) define the K-vector space u ∈ Lp(M,E) to mean

(I) u ∈ MeasSect(E) and

(II) ‖u‖pLp(M,E) :=
∫
|u(x)|ph(x) dµ(x) <∞.

For p = ∞ we set ‖u‖L∞(M,E) := ess supx∈M |u(x)|h(x) <∞.

When T ∈ C∞(∂M, TM) is an inward pointing vectorfield, and ν is the induced
density, then we define

Lp(∂M,E) := Lp(∂M,E|∂M) ,

where ∂M takes the place of M , ν takes the place of µ, and E → M is replaced
with E|∂M → ∂M .

Remark 2.21. Typically, we will only be concerned with C vector bundles and
their induced Lp spaces as a C space. If we are given an R-bundle E, we typically
complexify it to obtain E ⊗ C and then consider the Lp theory for E ⊗ C.

Remark 2.22. The space L∞(M,E) does not require a density µ.

Example 2.23. 1. For p ∈ [1,∞], the space Lp(M,E) is a Banach space.

2. For p ∈ (1,∞), the space Lp(M,E) is reflexive.

3. For p = 2, the space L2(M,E) is a Hilbert space. Here we have

〈u, v〉L2(M,E) =

∫
M

h(x)[u(x), v(x)] dµ(x) .

4. For p ∈ [1,∞), the space Lp(M,E) is separable, i.e. has a countable dense
subset. L∞(M,E) is not separable.
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2.8 Operator Theory

At the heart of differential equations are differential operators. In order to ma-
nipulate and understand these latter objects, it is important to fix some notation
and ideas surrounding them. As aforementioned, the books [52] and [33] give an
extensive description of the material we recall here.

Let B1,B2 be Banach spaces.

Definition 2.24. A linear map T : dom(T ) → B2, where dom(T ) ⊂ B1 is a linear
subspace, is called an operator.

The fact that T is not defined on the entire space is sometimes expressed by saying
that ‘T is unbounded’. It is important to emphasise that an operator is both the
map and the domain.

The following are an important list of notation when dealing with operators:

• dom(T ) is the domain of T .

• ker(T ) := {u ∈ dom(T ) | Tu = 0}.

• ran(T ) := {Tu ∈ B2 | u ∈ dom(T )}.

• graph(T ) := {(u, Tu) ∈ B1 × B2 | u ∈ dom(T )}.

• The operator T induces the graph norm ‖·‖T on dom(T ) given by

‖u‖2T := ‖u‖2B1
+ ‖Tu‖2B2

.

• We say S ⊂ T if dom(S) ⊂ dom(T ) and Su = Tu for all u ∈ dom(S).

2.9 Algebra with unbounded operators

In the situation when operators where operators are defined on the whole space, their
algebra simply follows from usual algebraic properties available in a vector space.
However, for general unbounded operators, we are required to specify the domain
on which the algebraic operators are defined. That is, for unbounded operators
S, T : B → B we define:

dom(T + S) := dom(T ) ∩ dom(S) ,
dom(ST ) := {u ∈ dom(T ) | Tu ∈ dom(S)} .

It could happen that dom(T + S) = {0} or dom(ST ) = {0} without S or T being
0.
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Exercise: The unbounded operators on a Banach space B with addition form a
commutative monoid, i.e. (S + T )+U = S+(T + U), S+0 = S, and S+T = T+S.
Composition is associative, and distributive from the right, i.e. (ST )U = S(TU) and
(S + T )U = SU + TU . We also have S − S = 0, 0S ⊂ S0 = 0, and S(T + U) ⊃
ST + SU .

Definition 2.25. • T is densely-defined if dom(T ) is a dense subspace of B1.

• T is closed if graph(T ) ⊂ B1 × B2 is a closed subset.

Notation: T ∈ C (B1,B2).

• T : B1 → B2 is bounded if dom(T ) = B1 and there is a CT < ∞ s.t.
‖Tx‖ ≤ CT‖x‖ for all x ∈ B1.

Notation: T ∈ B(B1,B2), sometimes also L (B1,B2).

• T is injective if ker(T ) = 0.

• T is invertible if it is injective with dense range and ‖T−1u‖ ≤ CT‖u‖ for all
u ∈ ran(T ).

Exercise 2.26. • T is closed ⇔ (dom(T ), ‖·‖T ) is a Banach space.

• T is bounded ⇔ T is continuous.

The following is a central theorem of operator theory. We enlist it here because it
shows that closed operators are ‘almost’ bounded.

Theorem 2.27 (Closed graph theorem). Let T : B1 → B2 be closed operator
with domain dom(T ) = B1. Then T is bounded.

Exercise 2.28. Let S ∈ B(B) := B(B,B) and T ∈ C (B) := C (B,B). Then
S, TS, S−1T, T−1 ∈ C (B) (for the last two if S−1 is injective and T−1 is injective,
respectively).

Theorem 2.29 (Open mapping theorem). A bounded surjection T : B1 → B2

is an open map, i.e. U ⊂ B1 open implies T (U) ⊂ B2 open.

Important criterion for closedness:

Remark 2.30. T is closed iff un ∈ dom(T ), un → u and Tun → v implies ∃u ∈
dom(T ) : v = Tu.
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Definition 2.31. An operator T is closable if it has a closed extension, i.e. if
there is a T̃ ∈ C (B1,B2) with T ⊂ T̃ .

Proposition 2.32. For T closable there is a T̄ corresponding to graph(T ), i.e.
∃T̄ ∈ C (B1,B2) s.t. graph(T ) = graph

(
T̄
)
.

Proof. Since graph(T ) ⊂ graph(T̃ ), the closure graph(T ) must correspond to an
operator which is a restriction of T̃ to a smaller domain.

In practice, the graphical closure is not a very workable definition to detect clos-
ability. Instead, the following is the most commonly used criterion.

Proposition 2.33. T is closable iff un ∈ dom(T ), un → 0 and Tun → v implies
v = 0.

Proof. a) ‘⇒’: Easy, exercise.

b) ‘⇐’: Suppose (xn, Txn) → (x, y) and (x̃n, T x̃n) → (x, z). Then yn := (xn − x̃n) →
0 and yn ∈ dom(T ) and Tyn → y − z. So y − z = 0, so graph(T ) = graph

(
T̄
)
.

2.10 Duality/Perfect Pairings

The geometry of L2-spaces sits at the heart of our concerns. Often, we are required
to consider other spaces when dealing with differential operators. These are typically
Hilbert spaces. However, in analysis, the natural structure that emerges forces us to
take the L2-inner product into account. This means that we are forced away from
the natural inner product associated with a given Hilbert space, and we are forced
to consider it to be paired with some other Hilbert space such that on a common
dense subset, the pairing is precisely the L2-inner product. This perspective sits
closer to general Banach space analysis rather than the Hilbert space setting, and
therefore, we will exposit material surrounding pairings at this level of generality.

Definition 2.34. Consider 〈·, ·〉 : B1 × B2 → K sesquilinear when K = C, i.e.
linear in the first and conjugate linear in the second entry, or bilinear when K = R.
The triple (B1,B2, 〈·, ·〉) is called a perfect pair (or duality) if the following hold.

(I) There is a C0 <∞ s.t. for all u ∈ B1 and for all v ∈ B2

|〈u, v〉| ≤ C0‖u‖B1
‖v‖B2

.
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(II) There is a C1 <∞ s.t. for every u ∈ B1

‖u‖B1
≤ C1 sup

{
|〈u, v〉|

∣∣ ∀v ∈ B2 : ‖v‖B2
= 1
}

.

(III) There is a C2 <∞ s.t. for every v ∈ B2

‖v‖B2
≤ C2 sup

{
|〈u, v〉|

∣∣ ∀u ∈ B1 : ‖u‖B1
= 1
}

.

The map 〈·, ·〉 is then called a perfect pairing or duality and it is denoted by
〈B1,B2〉.

Remark 2.35. A useful observation is that, in the bound for the norms in (II) or
(III), it is possible to pass instead to any dense subspace of B2 or B1 respectively.
Often in applications, useful formulae hold on dense subspaces, and therefore,
bounds on the norms are easily computed for more complicated objects typically
by passing to simpler ones.

Example 2.36. 1. A Hilbert space H together with its inner product 〈·, ·〉 :
H×H → K is a perfect pair.

2. 〈·, ·〉L2(M,E) induces a perfect pairing 〈·, ·〉 : Lp(M,E) × Lq(M,E) → K if
1
p
+ 1

q
= 1 and p, q ∈ (1,∞).

3. 〈〈·, ·〉〉 : B∗ × B → K, 〈〈T, u〉〉 := T [u] is called the canonical pairing.

Definition 2.37. Let T : B1 → B2 and S : B∗
2 → B∗

1 be operators satisfying

〈〈v, Tu〉〉 = 〈〈Sv, u〉〉

for all u ∈ dom(T ) ⊂ B1 and all v ∈ dom(S) ⊂ B2. Then we say S is adjoint to
T .

Notation 2.38. We write a ≲ b to mean the analyst’s inequality. That is, to say
there exists a constant such that a ≤ Cb. We may refer to the constant C here
as the implicit constant. The dependency on the constant C is usually apparent
from context and is typically independent from the terms on the left and right.
We write a ' b if a ≲ b and b ≲ a.

Lemma 2.39. Let T : B1 → B2 be densely-defined. Suppose that there exist
w,w′ ∈ B∗

1 such that for all u ∈ dom(T ),

〈〈u, Tu〉〉 = 〈〈w, u〉〉 and 〈〈u, Tu〉〉 = 〈〈w′, u〉〉 .

Then w = w′.
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Proof. The condition as stated is exactly that 〈〈w − w′, u〉〉 = 0 for all u ∈ dom(T ).
Using property (II), and on noting that dom(T ) is dense in B1 and using Re-
mark 2.35, we obtain that

‖w − w′‖ ≲ sup{|〈〈w − w′, u〉〉| | u ∈ dom(T )} = 0 .

I.e. w = w′.

As a consequence of this lemma, we are able to formulate the existence of the
maximal adjoint as follows.

Definition 2.40 (The canonical adjoint). Let T be densely-defined, and let

dom(T ∗,can) := {v ∈ B∗
2 | ∃w ∈ B∗

1 ∀u ∈ dom(T ) : 〈〈v, Tu〉〉 = 〈〈w, u〉〉} .

For v ∈ dom(T ∗,can) and we set T ∗,canv := w, where w ∈ B∗
1 satisfying 〈〈v, Tu〉〉 =

〈〈w, u〉〉. The operator T ∗,can is the canonical adjoint.

The c here in the definition refers to the fact that this operator is obtained with
respect to the canonical pairing 〈〈·, ·〉〉. It is maximal in the sense that, whenever S
is adjoint to T , then S ⊂ T ∗,can.

Our discussion so far has been only with respect to the canonical pairing. Given
a perfect paring 〈B1,B2〉 and a densely-defined operator T : B2 → B2 whether
an adjoint map exists with respect to this pairing. The following (non)example
highlights that this is not always the case.

Example 2.41 (Non example). The space of zero sequences

c0 :=
{
(xn)n∈N

∣∣ xn → 0
}

is a Banach space with respect to the norm ‖·‖∞.

We first show that its dual space is isomorphic to

`1 :=

{
(xn)n∈N

∣∣∣∣∣ ∑
n∈N

|xn| <∞

}
.

For u ∈ `1 and v ∈ c0, note that u[v] :=
∑∞

i=1 uivi is a well-defined bilinear map.
Conversely, if u ∈ c∗0, then on taking xi := (yj)j∈N where yj = 1 when j = i and
yj = 0 for j 6= i, we obtain that

u[v] = u

[
∞∑
i=1

vixi

]
=

∞∑
i=1

viu[xi] .

and setting ui := u[xi], it is easy to see that (ui)i∈N ∈ `1. This shows that c∗0 ∼= `1
and therefore, we have an induced perfect pairing 〈`1, c0〉 given by

〈u, v〉 =
∞∑
i=1

uivi .
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Let T : `1 → `1 be the map defined by

Tu =

(
∞∑
j=1

ui, 0, . . .

)
.

Suppose that an adjoint map with respect to 〈`1, c0〉 exists for T . That is, suppose
there is T ′ : c0 → c0 such that 〈v, Tu〉 = 〈T ′v, u〉. Let T ′v = (wi)i∈N.

〈v, Tu〉 =
∞∑
i=1

v1ui = v1

∞∑
i=1

ui

whereas

〈T ′v, u〉 =
∞∑
i=1

wiui .

From this, we see that wi = v1 for all i, which yields that limi→∞wi 6= 0. Therefore,
T ′ cannot be a map into c0.

It is also possible to show that `∗1 ∼= `∞ 6= c0, which in particular shows that c0 and
`1 are not reflexive space.

Let 〈B1,B2〉 be a perfect pair.

Definition 2.42. Define

Φ1 : B1 → B∗
2 by (Φ1u)[v] := 〈u, v〉 and

Φ2 : B2 → B∗
1 by (Φ2x)[y] := 〈y, x〉 .

Lemma 2.43. The ranges Φ1(B1) ⊂ B∗
2 and Φ2(B2) ⊂ B∗

1 are closed linear sub-
spaces.

Proof. The proof is left as an exercise.

The following is one of the cornerstone theorems of functional analysis, of which
there are many generalisations beyond the Banach space setting. For our purposes
we produce the following incarnation.

Theorem 2.44 (Hahn-Banach). Let B be a Banach space and X ⊂ B a linear
subspace. Suppose that fX ∈ X∗, that is, a linear functional on X∗. Then, there
exists an extension f ∈ B∗ such that f = fX on X and ‖f‖X∗ = ‖f‖B∗.

Corollary 2.45. Let X ⊂ B be a proper closed subspace. Fix x0 ∈ B \X (so that
in particular dist(x0, X) > 0). Then there exists f ∈ B∗ with ‖f‖ = 1, X ⊂ ker(f)
and f(x0) = dist(x0, X).
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The most significant consequence of the Hahn-Banach theorem in our context is the
following.

Proposition 2.46. Let 〈B1,B2〉 (i.e. a perfect paring). Then B2 is reflexive iff
B1 is reflexive and Φ1(B1) = B∗

2 and Φ2(B2) = B∗
1.

Proof. Assume that B2 is reflexive and suppose that Φ1B1 ⊂ B∗
2 is a proper subspace.

So, let ξ ∈ B∗
2 \Φ1B1. By Corollary 2.45, we can find an f ∈ B∗∗

2 such that ‖f‖ = 1
and f(Φ1b1) = 0 for all b1 ∈ B1. Reflexivity of B2 is exactly that B∗∗

2 = evB2. For
b∗2 ∈ B∗

2,
f(b∗2) = ev

(
ev−1 f

)
[b∗2] = b∗2

[
ev−1 f

]
.

Since Φ1B1 ⊂ B∗
2, for a choice of b∗2 = Φ1b1,

0 = f(Φ1b1) = (Φ1b1)
[
ev−1 f

]
=
〈
b1, ev

−1 f
〉

.

That is, for all b1, we have that 〈b1, ev−1 f〉 = 0. Using (III), we note that∥∥ev−1 f
∥∥ ≲ sup

{∣∣〈b1, ev−1 f
〉∣∣ ∣∣ b1 ∈ B1, ‖b1‖ = 1

}
= 0 .

But ev : B2 → B∗∗
2 is a Banach space isomorphism, which yields f = 0. This

contradicts that ‖f‖ = 1. Therefore, Φ1B1 = B∗
2.

A Banach space is reflexive if and only if its adjoint space is reflexive. Moreover, if
two Banach spaces are isomorphic and one is reflexive, so is the other. Since B2 is
reflexive, so is B∗

2 and since we have shown Φ1 : B1 → B2 is an isomorphism, this
shows that B1 is reflexive.

The equality Φ2B2 = B∗
1 is argued similarly.

Definition 2.47. We say that 〈B1,B2〉 is reflexive if either B1 or B2 is reflexive.

The canonical pairing is explored to great lengths in [33], i.e. in Chapter III and
Section 4. Proposition 2.46 allows us to ‘import’ all these results into the setting of
reflexive pairings 〈B1,B2〉.

Proposition 2.48. If B2 is reflexive and 〈B1,B2〉, then for T : B2 → B2 densely-
defined there is a unique closed maximal T ∗ : B1 → B2 satisfying

〈T ∗u, v〉 = 〈u, Tv〉

for all v ∈ dom(T ) and u ∈ dom(T ∗) := Φ−1
1 (dom(T ∗,can)). We have

T ∗ = Φ−1
1 T ∗,canΦ1 .

Proof. The fact that T ∗ is an adjoint to T is easily seen. We leave it as an exercise
to show that T ∗ is maximal.
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Example 2.41 demonstrates this proposition is sharp. Moreover, the proposition
illustrates in a concrete way the way in which an adjoint can fail to exist. In the
absence of reflexivity, it is possible that the subspace Φ−1

1 dom(T ∗,can) = {0} despite
dom(T ∗,can) 6= {0}.

Definition 2.49. For 〈B1,B2〉 and B2 reflexive, the closed operator T ∗ : B1 → B1

obtained for a densely-defined operator T : B2 → B2 is called the adjoint of T
with respect to 〈B1,B2〉.

Often, this is simply called the adjoint when the pairing is fixed and the map is clear
from context.

Corollary 2.50. If B1 = B2 = H is a Hilbert space, then T ∗ is the usual adjoint
w.r.t. the Hilbert inner product.

Definition 2.51 (Annihilator). Let 〈B1,B2〉 and subspace S ⊂ B1. Then

S⊥,⟨·,·⟩ := {y ∈ B2 | ∀x ∈ S : 〈x, y〉 = 0}

is called annihilator of S w.r.t. 〈·, ·〉.

Lemma 2.52. S⊥,⟨·,·⟩ ⊂ B2 is a closed subspace and

S̄ ⊂
(
S⊥,⟨·,·⟩)⊥,⟨·,·⟩ = (S̄⊥,⟨·,·⟩)⊥,⟨·,·⟩ .

Proposition 2.53. Let B1 be reflexive and 〈B1,B2〉. Then

I) Φ2

(
S⊥,⟨·,·⟩) = S⊥,〈〈B∗

1 ,B1〉〉 and

II)
(
S⊥,⟨B1,B2⟩

)⊥,⟨B1,B2⟩
= S̄.

Proof. a) Ad I).

S⊥,〈〈B∗
1 ,B1〉〉 = {y ∈ B∗

1 | ∀x ∈ S : 〈〈x, y〉〉 = 0}
=
{
y ∈ B∗

1

∣∣ ∀x ∈ S : Φ2 ◦
(
Φ−1

2 y
)
[x] = 0

}
=
{
y ∈ B∗

1

∣∣∣ ∀x ∈ S :
〈
x,Φ−1

2 y
〉
= 0
}

= Φ−1
2 S⊥,⟨·,·⟩ .

b) Ad II). Recalling the evaluation functional, ev : B → B∗∗, ev(x)[y] = y[x], we
have in general that (

S⊥,〈〈B∗
1 ,B1〉〉

)⊥,〈〈B∗∗
1 ,B∗

1〉〉 ∩ evB = ev S .

Reflexive means exactly that evB = B∗∗. The conclusion follows from this.
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Remark 2.54. Identify (B1 × B2)
∗ ∼= B∗

1 × B∗
2. T : B1 → B2 densely-defined,

T ∗,can : B∗
2 → B∗

1 is given by

inv graph(−T ∗,can) :={(−T ∗,canu, u) | u ∈ dom(T ∗,can)}

=graph(T )⊥,⟨⟨(B1×B2)
∗,B1×B2⟩⟩ .

Applying this to the case that B1 = B2 and where we have an another reflexive
Banach space B3 where we have a perfect pairing 〈B3,B2〉, we obtain that the
adjoint T : B3 → B3 satisfies

inv graph(−T ∗) = graph(T )⊥,⟨B3,B2⟩ .

2.11 Projectors and decompositions

Of significance is to understand how to break up a given Banach space into subspaces
in a useful manner. We will see here that projectors are a systematic language in
which we can understand how to topologically decompose a Banach space. Later, in
application, we will see that the projectors are naturally associated with information
emerging from differential operators. As a consequence, even in the Hilbert setting,
these subspaces will not generally be orthogonal. Again, we find that the techniques
that we are forced to use are closer to the general Banach space setting, and therefore,
we give an account of decompositions for Banach spaces.

Definition 2.55. Let B be a Banach space. For not necessarily closed subspaces
B1,B2 ⊂ B we consider the vector space

B1 + B2 := {u+ v | u ∈ B1, v ∈ B2} .

If B1 ∩ B2 = 0, then we say that B1,B2 are algebraically complementary and we
write

B1 ⊕a B2 := B1 + B2 ,

where the ‘a’ signifies algebraic sum.

If B1 and B2 are closed, algebraically complementary and B = B1⊕B2 we say that
B1,B2 are complementary.

If B1 ⊂ B is closed and there is a B2 ⊂ B closed s.t. B = B1 ⊕ B2, we say that B1

is complemented.

In the literature, it is sometimes written B1 ⊕ B2 without the sum being a Banach
space. In such situations, it is often written that the sum is not closed. These
definitions are not made arbitrarily. It can be the case that a Banach space and
even a Hilbert space is an algebraic sum of a closed subspace and a non-closed space,
or that the sum of two algebraically complementary closed subspaces might not be
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closed. In general, in infinite dimensions, understanding the closedness of sums of
spaces is a key and highly non-trivial issue. The following examples highlight the
various situations that can arise.

Example 2.56. 1. Let H be a Hilbert space and H1 ⊂ H a subspace. Then

H⊥
1 := {u ∈ H | ∀v ∈ H1 : 〈u, v〉 = 0}

is a closed subspace and H = H1 ⊕ H⊥
1 . So in a Hilbert space, every closed

subspace is complemented.

2. If H1,H2 ⊂ H are closed algebraically complementary subspaces i.e. H1∩H2 =
0, then H1 ⊕H2 is not necessarily closed.

We demonstrate this with the following example due to Robert Israel. Let
H := `2 and define

H1 :=
{
(hn)n∈N

∣∣ ∀n ∈ N : h2n = 0
}

,
H2 :=

{
(hn)n∈N

∣∣ ∀n ∈ N : h2n+1 = nh2n
}

.

a) H1,H2 are algebraically complementary.

Fix h ∈ H1 ∩ H2. This means that implies h2n = 0 and h2n+1 = nh2n = 0, so
h = 0.

b) H1 is closed.

Let (xi) := (hn,i)n ∈ H1 with xi → x = (hn) ∈ H. Then,∑
n

|hn,i − hn|2 =
∑
j

|h2j|2 +
∑
j

|h2j+1,i − h2j+1|2 ,

and since the left hand side tends to 0 as i → ∞, so do each of the terms on
the the right hand side. This implies h2j = 0 and thus x ∈ H1.

c) H2 is closed. As before, let (xi) = (hn,i)n ∈ H2 and suppose that xi → x =
(hn)n ∈ H. Then,∑

n

|hn,i − hn|2 =
∑
j

|h2j,i − h2j|2 +
∑
j

|nh2j,i − h2j+1|2 ,

and again, again the left hand side goes to 0 implying h2j+1 = nh2j and thus
x ∈ H2.

d) H1 ⊕a H2 6= H.

Consider x = (hn) ∈ H = `2 with hn := 1
n+1

. Suppose there are u ∈ H1, v ∈
H2 s.t. x = u+ v. Then u2n = 0, implying v2n = 1

2n+1
and thus v2n+1 =

n
2n+1

.
We get ∑

n

|vn|2 =
∑
n

n2

(2n+ 1)2
= ∞ .
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e) H1 ⊕a H2 is dense in H, and hence, not closed.

Let `F := {x = (xj) | ∃N = N(x)∀j > n : xj = 0}. It is well known that `F ⊂
`2 is dense in H. Since `F ⊂ H1 ⊕a H2, the latter space is also dense.

Throughout, we will consider separable Hilbert spaces. Recall that for a sep-
arable Hilbert space H, we can choose an orthonormal basis {hi}i∈N, and by
mapping hi 7→ ei, we obtain an isometry between H and `2. Therefore, we
are able to pull the subspaces we just constructed via this map which shows
that every separable Hilbert space always admits closed subspaces whose sum
is non-closed.

3. We can have H = H1 ⊕a H2 where H2 is closed and finite dimensional but H1

is not closed.

To see this, again let H := `2. Take an f : `2 → R which is linear and
unbounded (an unbounded functional). Certainly, we can find x0 ∈ `2 s.t.
f(x0) = 1. Write x ∈ `2 as

x = (x− f(x)x0)︸ ︷︷ ︸
∈ker(f)

+ f(x)x0︸ ︷︷ ︸
∈Rx0

,

where we see that f(x − f(x)x0) = f(x) − f(x)x0 = 0. Clearly, Rx0 is one
dimensional, and hence, it is closed.

It remains to argue ker(f) is not closed. This follows from the following more
general fact: for a Banach space B,

ϕ : B → R unbounded ⇒ ker(ϕ) is not closed .

To see this, since ϕ is assumed to be unbounded, there exists xn ∈ H s.t.
|ϕ(xn)| ≥ n‖xn‖ > 0. For any x ∈ B, define

yn := x− xn
ϕ(xn)

.

By the choice of xn, it is clear that∥∥∥∥ xn
ϕ(xn)

∥∥∥∥ =
‖xn‖
|φ(xn)|

≤ 1

n
→ 0 .

Now, we choose x such that ϕ(x) = 1. Then

ϕ(yn) = ϕ(x)− ϕ(xn)

φ(xn)
= 1− 1 = 0 ,

so yn ∈ ker(ϕ).

Since yn → x, if ker(ϕ) closed, we would obtain x ∈ ker(ϕ). That is, φ(x) = 0
but this contradicts ϕ(x) = 1.

4. `0 ⊂ `∞, `0 := {(xn) | limn→∞ xn = 0} is not complemented.
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5. Banach spaces for which every closed subspace is complemented is essentially
a Hilbert space. This follows from an important theorem of Lindenstrauss and
Tzafriri 1971 [37], where they prove that a Banach space is isomorphic to a
Hilbert space iff every closed subspace is complemented.

We want to study a systematic way of decomposing spaces via classes of operators.
To that end, we first note the following.

Proposition 2.57. Let P ∈ B(B) be an idempotent (i.e. P 2 = P ). Then PB
and (I − P )B are closed and complementary, i.e.

B = PB ⊕ (I − P )B .

Proof. a) B = PB + (I − P )B.

Fix b ∈ B, then trivially, b = Pb+ (I − P )b ∈ PB + (I − P )B.

b) PB and (I − P )B are closed.

Let xn ∈ PB, xn → x. Then there are x̃n s.t. xn = Px̃n. Then

Pxn = P 2x̃n = Px̃n = xn .

Since P is bounded, we have that Pxn → Px from the fact that xn → x. As we
have just shown xn = Pxn and therefore, we have that xn → Px. Limits are unique
in a Hausdorff space, and hence, x = Px ∈ PB.

The corresponding argument for (I−P )B comes from showing that the map (I−P )
is an idempotent and bounded. Therefore, the same argument works on replacing
P by (I − P ).

c) PB and (I − P )B are complementary.

Let x ∈ PB ∩ (I − P )B. Then, x = Pb = (I − P )Pb = (P − P 2)b = 0 .

This proposition justifies the following definition.

Definition 2.58. Let P ∈ B(B) idempotent, i.e. P 2 = P . Then P is called a
projector or projection.

We say that P projects to PB along (I − P )B.

Remark 2.59. Here the boundedness of P : B → B′ ⊂ B was vital.

Combining Proposition 2.57 and the following, we are able to characterise all de-
compositions of Banach spaces in terms of projectors.
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Proposition 2.60. B = B1 ⊕B2. Then there is a projection P to B1 along B2.

Proof. Left as an exercise (Hint: closed graph theorem).

Remark 2.61. When a projector P projects to B1 along B2, it is easy to check
that kerP = (I −P )B = B2. For a projector, it is not enough to specify its range,
but rather, both the range and kernel. More precisely, if B1 is a closed subspace
complemented by B2 6= B3, we have two distinct projections P1 which projectors
to B1 along B2 and P2 which projects to B1 along B3. The projectors P1 6= P2.

Proposition 2.62. Let 〈B1,B2〉 be reflexive. If P ∈ B(B2) is a projector, then
the adjoint map P ∗ ∈ B(B1) is also a projector.

Proof. Let P ∗,can ∈ B(B∗
2) be the canonical adjoint. This exists and has domain

dom(P ∗,can) = B∗
2 (this does not require reflexivity).

We have dom(P ∗) = Φ−1
1 dom(P ∗,can) = Φ−1

1 B∗
2 = B1 by Proposition 2.48. Moreover,

P ∗ is closed and on invoking the closed graph theorem, Theorem 2.27, we obtain
P ∗ ∈ B(B1). Now,〈

(P ∗)2v, u
〉
= 〈P ∗v, Pu〉 =

〈
v, P 2u

〉
= 〈v, Pu〉 = 〈P ∗v, u〉 ,

so (P ∗)2 = P ∗.

Proposition 2.63. Let 〈B1,B2〉 be reflexive and P : B2 → B2 a projection. Then
〈P ∗B1, PB2〉 is reflexive.

Proof. It is a fact that any closed subspace of a reflexive space is reflexive. The rest
is left as an instructive exercise in calculating with perfect pairings.

Proposition 2.62 yields a decomposition of B1 when 〈B1,B2〉 is reflexive, and so
together, we obtain the following decompositions:

B2 = PB2 ⊕ (I − P )B2 ,
B1 = P ∗B1 ⊕ (I − P ∗)B1 ,

Proposition 2.63 then asserts that the first summand (and also the second summand)
are, in fact, a reflexive perfect pairing. From this, it is easy to see that

PB2 = ((I − P ∗)B1)
⊥,⟨B1,B2⟩ ,

and similarly for the other spaces.



3 Differential operators and their
extensions

3.1 Density of C∞
cc (M,E) in Lp(M,E)

Lemma 3.1. Let (M ′, µ) be a measured manifold in the usual sense (i.e. ∂M ′ = ∅
and µ ∈ |Λ|+M). Let E →M ′ a vector bundle with metric h.

Then C∞
c (M ′, E) is dense in Lp(M ′, E) for p ∈ [1,∞).

Proof. a) First note that we can find a countable open covering C := {(Uj, ψj)} s.t.
E|Uj

is trivial and for which there are Vj ⊂ Uj open and V̄j ⊂ Uj is compact with
M ′ =

⋃
j Vj.

b) Let P := {ηj} be a smooth partition of unity subordinate to C .

c) Let Lpc(M
′, E) := {u ∈ Lp(M ′, E) | spt(u) compact}. Then, Lpc(M ′, E) is dense

in Lp(M ′, E). Proof: Exercise.

d) Let u ∈ Lpc(M
′, E). Then there is un ∈ C∞

c (M ′, E) s.t. un → u in Lp(M ′, E),
p ∈ [1,∞).

Fix u ∈ Lpc(M
′, E). Then there exists an N > 0 s.t.

u =
N∑
i=1

(ηiu) .

Let % be the standard symmetric mollifier on Rn, i.e.

%(x) =

{
cne

1

1−|x|2Rn if |x| ≤ 1 ,
0 if |x| ≥ 0 ,

where cn is a normalisation constant s.t.
∫
Rn % dL = 1.

Fix ε > 0 to be chosen later. Let ui := ηiu and note that spt(ui) ⊂ Vi.

Choose δi := δi(ε) > 0 s.t.∥∥ui ◦ ψ−1
i −

(
ηi ◦ ψ−1

i

)
%δi(ε) ∗

(
ui ◦ ψ−1

i

)︸ ︷︷ ︸
∈Lp(ψi(Ui),E)

∥∥
Lp(ψi(Ui),E)

<
ε

2N
, (3.1)
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where %δ(x) := δ−n%(δ−1x) and(
%δ ∗ f

)
(x) =

(∫
%δ(x)fα(x− y) dL (x)

)
eα ,

where eα is an orthonormal frame for E in U .

We remark that mollifiers converge against the Lebesgue measure and our integrals
are against µ. Therefore, to obtain the estimate (3.1), we use the fact that µ is
smooth and positive, and therefore, inside Vi there is a ci ≥ 1 s.t.

c−1
i ≤ µψ ≤ ci .

The constant ci, as well as potential other constants in Vi are all absorbed, since we
are free to choose δi as arbitrarily close to 0.

For ε := 1
n

define

un :=
N∑
i=1

ηi

(
%δi(

1
n) ∗

(
ui ◦ ψ−1

i

))
◦ ψi ∈ C∞

c (M ′, E) .

Then, we note that

‖u− un‖ ≤
N∑
i=1

‖ui − ηiu
n‖ ≤

N∑
i=1

1

n

1

2N
<

1

n
,

where the penultimate inequality follows from (3.1).

That is, we have proved that C∞
c (M ′, E) is dense in L2

c(M
′, E).

e) C∞
c (M ′, E) is dense in Lp(M ′, E). Proof: Exercise.

Proposition 3.2. Let (M,µ) be a measured manifold with boundary. Then
C∞

cc (M,E) is dense in Lp(M,E) for p ∈ [1,∞).

Proof. Clearly, M ′ := M̊ is a manifold without boundary and µ|M ′ ∈ C∞(|Λ|+M ′)

and ů := u|M̊ ∈ Lp(M̊, E).

By Lemma 3.1, we obtain a sequence un ∈ C∞
c (M̊, E) s.t. ůn → ů in Lp(M̊, E).

Define

un(x) :=

{
ůn(x) if x ∈ M̊ ,
0 if x ∈ ∂M ,

then un ∈ C∞
cc (M,E) and

‖un − u‖pLp =

∫
M

|un − u|pn dµ

=

∫
M̊

|un − u|pn dµ+

∫
∂M

|un − u|pn dµ︸ ︷︷ ︸
=0

= ‖ůn − ů‖pLp → 0 .

This completes the proof.
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3.2 Differential operators on vector bundles

Let E,F →M be vector bundles and D : C∞(M,E) → C∞(M,F ) linear.

Definition 3.3. D is of order at most m ∈ N, if in every trivialising chart (U, ψ),
on fixing frames {eβ} and {fϑ} for E|U and F |U respectively, there are smooth
functions x 7→ Aα,ϑβ (x) s.t.

Du|U(x) =
∑
|α|≤m

Aα,ϑβ (x)

(
∂|α|

∂xα
uβ
)
(x)fϑ(x) ,

where α ∈ Nn
+ is a multi-index and |α| :=

∑n
i=1 αi.

Let Diffm(E,F ) be the set of such operators.

For m > 0, D is of order m if D ∈ Diffm(E,F ) \Diffm−1(E,F ).

We point out the following important properties regarding differential operators,
each of which are readily verified from their definition.

Proposition 3.4. I) Differential operators are local. That is, if D ∈
Diffm(E,F ), then sptDu ⊂ sptu.

II) Diffm(E,F ) ⊂ Diffm+1(E,F ).

To make the notation more compact, forD ∈ Diffm(E,F ) writeDu =
∑

|α|=mA
α(x) ∂

m

∂xα
u+

l.o.t. where Aα(x) : Ex → Fx is defined by Aα(x)eβ(x) := Aα,ϑβ (x)fϑ(x).

In what follows, we would like to extract a part of the operator which yields a section
of a certain bundle. To explicitly compute this in a simple situation, let us restrict
ourselves to m = 1. Inside a trivialising chart (U, ψ), for x ∈ ψ(U),

D
(
u ◦ ψ−1

)
(x) =

n∑
i=1

(
Ai ◦ ψ−1

)
(x)

∂

∂xi
(
u ◦ ψ−1

)
(x) + A0(x)

(
u ◦ ψ−1

)
(x) . (3.2)

Let (V, ϕ) be another trivialising chart near ψ−1(x). Then

D
(
u ◦ ϕ−1

)
(y) =

n∑
i=1

(
Bi ◦ ϕ−1

)
(y)

∂

∂yi
(
u ◦ ϕ−1

)
(y) +B0(y)

(
u ◦ ϕ−1

)
(y) . (3.3)

We remark that, implicitly, we are using the same frame in the definition of Ai and
Bi.
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We then calculate the behaviour of the expression in (3.2) in coordinates x when we
change to coordinates y:(
Ai ◦ ψ−1

)
(x)

∂

∂xi
(
u ◦ ψ−1

)
(x) =

(
Ai ◦ ψ−1 ◦

(
ψ ◦ ϕ−1

))
(x)

∂

∂xi
(
u ◦ ψ−1

)((
ψ ◦ ϕ−1

)
(y)
)

=
(
Ai ◦ ϕ−1

)
(y)

∂yj

∂xi
∂

yj
(
u ◦ ϕ−1

)
(y)

Now define:

σD(x) := σD,1(x) := Ai,ϑβ (x)⊗ ∂

∂xi

∣∣∣∣
x

⊗ eβ(x)⊗ fϑ(x) ,

where eβ(x) is the induced basis, i.e. eβ(x)[eα(x)] = δβα.

From the transformation behaviour and considering the expression (3.3), we see that
this defines a σD ∈ C∞(T ∗M ⊗ E∗ ⊗ F ). More generally, we define the following.

Definition 3.5. Let D ∈ Diffm(E,F ). Let ξ ∈ T ∗
xM and f ∈ C∞(M) satisfying

f(x) = 0 and df(x) = ξ. Fix v ∈ Ex and let ṽ ∈ C∞
(
U,E|U

)
be an extension of

v on an open neighbourhood U of x, i.e. ṽ(x) = v. Define

σD,m(x, ξ)v :=
1

m!
D(fmṽ) .

Remark 3.6. I) Using the bundle projection π : T ∗M →M we can write

σD,m ∈ C∞(M,Hom(π∗E, π∗F )) .

II) ∀x ∈M, ξ ∈ T ∗
xM : σD,m(x, ξ) = 0 happens iff D ∈ Diffm−1(E,F ).
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Definition 3.7. The principal symbol σD is the σD,m for the smallest m s.t. D ∈
Diffm(E,F ).

The more globally inclined might have given the following equivalent definitions.

Remark 3.8. Let E,F → M be vector bundles and ∇ : C∞(M,E) →
C∞(M,T ∗M ⊗ E) a connection on E. We say P ∈ Diffk(E,F ) (linear differential
operator of order ≤ k) if

P =
k∑
j=0

Aj ◦ ∇j

for suitable homomorphism fields Aj ∈ C∞(M,Hom(T ∗M⊗j ⊗ E,F )) (note ∼=
C∞(M,TM⊗j ⊗ Hom(E,F )), they eat the vector entries and leave homomor-
phisms from E to F ).

We say that P is of order k if Ak 6= 0. In that case we call the k-homogeneous
section σP :=

(
ξ 7→ Ak

(
ξ⊗k
))

∈ C∞(T ∗M,Hom(E,F )) the principal symbol of P .

Exercise:

• For D of order 1, verify the expression

σD(x) = Ai,ϑβ (x)⊗ ∂

∂xi

∣∣∣∣
x

⊗ eβ(x)⊗ fϑ(x) .

• For D of order 1, f ∈ C∞(M) (we do not assume f(x) = 0)) and v ∈
C∞(M,E), show

σD(x, df(x))(v(x)) = ([D, fI]v)(x) .

Proposition 3.9. For D1 ∈ Diffℓ(E,F ) and D2 ∈ Diffm(F,G) we have

σD2◦D1,ℓ+m(x, ξ) = σD2,m(x, ξ) ◦ σD1,ℓ(x, ξ) .

Definition 3.10. D ∈ Diffm(E,F ) is elliptic if σD(x, ξ) is invertible for all x ∈M
and ξ ∈ T ∗

xM \ {0}.

Remark 3.11. If D is elliptic, then rk(E) = rk(F ).

Example 3.12. • d : C∞(M,ΛM) → C∞(M,ΛM) exterior derivative, then

σd(x, ξ)ω = d(fω̃)(x) = (df ∧ ω̃)(x) + (fdω̃)(x)︸ ︷︷ ︸
=0

= ξ ∧ ω .

The operator d is non-elliptic (Exercise).
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• ∇ : C∞(M,E) → C∞(M,T ∗M ⊗ E) connection,

σ∇(x, ξ)v = ∇(fṽ)|
x
= (df ⊗ ṽ + f∇ṽ)|

x
= ξ ⊗ v .

This is not elliptic, and indeed since rk(E) 6= rk(T ∗M ⊗ E).

3.3 Formal adjoint

Let hE, hF be metrics on the vector bundles E and F respectively. We fix D ∈
Diffm(E,F ) be of order m and a positive density µ.

Proposition 3.13. There is a unique D† ∈ Diffm(F,E) satisfying

〈Du, v〉L2(M,F ) =
〈
u,D†v

〉
L2(M,E)

for all u ∈ C∞
cc (M,E) and all v ∈ C∞

cc (M,F ).

Remark 3.14. D and D† are automatically densely-defined in L2.

Proof. a) Uniqueness.

Suppose D†
1 and D†

2 are both adjoints of D on the domains as given. Then〈
u,
(
D†

1 −D†
2

)
v
〉
=
〈
u,D†

1v
〉
−
〈
u,D†

2v
〉

= 〈Du, v〉 − 〈Du, v〉
= 0 .

Recall that 〈·, ·〉 : L2(M,E)× L2(M,E) → K is a perfect pairing. Therefore

∥∥∥(D†
1 −D†

2

)
v
∥∥∥
L2(M,E)

≲ sup
u∈L2(M,E)

u̸=0

∣∣∣〈u,(D†
1 −D†

2

)
v
〉∣∣∣

‖u‖L2

= sup
u∈C∞

cc (M,E)
u̸=0

∣∣∣〈u,(D†
1 −D†

2

)
v
〉∣∣∣

‖u‖L2

= 0 ,

where the second equality follows from Proposition 3.2, where we showed that
C∞

cc (M,E) is a dense subset of L2(M,E). This shows D†
1v = D†

2v almost-everywhere.
In the existence of D†, we will show it is an operator with smooth coefficients, and
hence will give equality everywhere.

b) Existence.
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If u ∈ C∞
cc (M,E) with spt(u) ⊂ U for a chart (U, ψ) corresponding to trivialisations

for E,F and {eβ}, {fϑ} are orthonormal frames of E,F respectively, then

〈Du, v〉L2(M,F ) =

∫
hF

∑
|α|≤m

Aα
∂|α|

∂xα
u, v

µψ dψ∗L

=

∫
hE

u, 1

µψ

∑
|α|≤m

(−1)|α|
∂|α|

∂xα

(
µψ(A

α)Tv
)µψ dψ∗L .

Here, we have used integration by parts and the divergence theorem. For general
u ∈ C∞

cc (M,E) patch these together using a partition of unity. A direct calculation,
using the product rule, yields that

D†v := (−1)mAα(x)T
∂m

∂xα
v + l.o.t. .

Note that the adjoint certainly contains metric information of hE and hF , but this is
encoded in the definition of the the matrix Aα since it is defined it using orthonormal
frames in each bundle. Since x 7→ Aα(x) is smooth, it follows that x 7→ Aα(x)T , and
therefore, this upgrades uniqueness from almost-everywhere to everywhere.

Definition 3.15. For D ∈ Diffm(E,F ) of order m, the unique D† ∈ Diffm(F,E)
is called the formal adjoint.

Proposition 3.16. Let D ∈ Diffm(E,F ). Then σD†(x, ξ) = (−1)mσD(x, ξ)
†.

Remark 3.17. For E = F and m = 1 and D = D† we have

σD†(x, ξ) = σD(x, ξ) = −σD(x, ξ)
† ,

i.e. σD(x, ξ) is skew-adjoint when we have a formally self-adjoint operator D. We
define the symbol in this way for consistency with K = R. To understand this
explicitly, consider the operator D = d

dx
on R. There we have〈

d

dx
u, v

〉
=

〈
u,− d

dx
v

〉
and σ d

dx
(x, ξ) = ξ .

Clearly,
σ− d

dx
(x, ξ)v = − d

dx
(fv)|x = −ξ .

Also,
σ
( d
dx)

†(x, ξ) = σ− d
dx
(x, ξ) = (−1)σ d

dx
(x, ξ)† = −ξ .

Therefore, we see in K = R that including the (−1) in the definition is important.
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If we are working on K = C, then we are able to obtain a formally self-adjoint
version of d

dx
by instead considering ı d

dx
. I.e.,〈

ı
d

dx
u, v

〉
=

〈
u, ı

d

dx
v

〉
.

In some places in the literature, formally self-adjoint operators have Hermitian-
symmetric symbols. More precisely, their symbols are obtained by taking the
symbol we defined and multiplying it by ı, but this essentially restricts us to only
consider C-valued bundles. It is important to always verify the precise definition
of symbol as used by various authors when consulting the literature.

Example 3.18. • Fix a Riemannian metric g on M . Define the cut product ⌞
by

g(ξ ⌞ η, ω) = g(η, ξ ∧ ω) for ξ, ω, η ∈ ΛM .
Note, this is not the interior product ⌟, which is the insertion of a vector
into a covector, which does not require a metric. Here, we are defining the
adjoint of ∧ with respect to a metric g. Indeed, ⌞ can be related to ⌟ via
appropriately composing with musical isomorphisms or through computation
in an orthonormal frame once a metric is fixed.

Note that, for a frame {ei} for ΛM , dω = ei ∧ ∇eiω. Further assuming that
ei is synchronous at x, the following is readily verified:

g(dω, η)|x = g(∇eiω, ei ⌞ η)|x = −g(ω, ei ⌞∇eiη)|x + divXg,ω,η(x) , (3.4)

where Xg,ω,η is a vectorfield depending on g, ω and η. Let d†g ∈ Diff1(ΛM)
denote the formal adjoint of d. Then, from (3.4), since the divergence term
integrates to zero and the formal adjoint is unique, we see that

σd†g(x, ξ)ω = −ξ ⌞ ω .

• ∆g := d†gd = −div ◦ grad, the Laplace-Beltrami operator on M . Then

σ∆g(x, ξ) = −|ξ|2g ,

this is an elliptic second-order operator.

• D = d+ d†g ∈ Diff1(ΛM), the Hodge-Dirac operator, then

σD(x, ξ)ω = ξ ∧ ω − ξ ⌞ ω ,

this is an elliptic first-order operator.

3.4 The operator theoretic perspective of weak and
distributional derivatives

Consider ∂j := ∂
∂xj

on a smooth bounded domain Ω ⊂ Rn. In this classical setting,
we often consider the weak derivative as well as the distributional derivative from a
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functional analytic perspective, usually framed in the context of the so-called ‘test
functions’. For the purposes of the general differential operators we discuss, where we
are forced to frame the objects of interest from an operator theoretic point of view,
we rephrase these classical notions in order to understand their operator theoretic
essence.

For u, v ∈ C∞
cc (Ω), a direction calculation yields that

〈∂ju, v〉 =
∫
∂juv̄ dL = −

∫
u∂j v̄ dL = 〈u,−∂jv〉 . (3.5)

In context of our discussion in the previous section, this precisely is saying that −∂j
is the formal adjoint of ∂j.

We recall the construction of the distributional derivative. This is a map

(∂j)dist : L
2(Ω) → (C∞

cc )
dual := {C-linear functionals on C∞

cc} ,

defined using (3.5) as (
(∂j)distu

)
[v] := 〈u,−∂jv〉 ,

for u ∈ L2(Ω).

Now let us recall the weak derivative, which is constructed as follows. Given a
u ∈ L2(Ω) suppose there exists fu ∈ L2(Ω) s.t.

〈u,−∂jv〉 = −
∫
u∂j v̄ =

∫
fuv̄ = 〈f, v〉 . (3.6)

The weak derivative (∂j)weak is then defined as

(∂j)weaku := fu .

This is, in fact, an unbounded yet closed operator

(∂j)weak : L
2(Ω) → L2(Ω) .

To see this, we need to understand the set of all possible fu ∈ L2(Ω) for a given
u ∈ L2(Ω) which satisfies the formula (3.6). Suppose such an fu exists given a
u ∈ L2(Ω) satisfying (3.6). Invoking the Cauchy-Schwarz inequality, we find that

|〈u,−∂jv〉| = |〈fu, v〉| ≤ ‖fu‖L2‖v‖L2

for all v ∈ C∞
cc (Ω).

Conversely suppose that |〈u,−∂jv〉| ≤ cu‖v‖L2 for all v ∈ C∞
cc (Ω). Since C∞

cc (Ω) is a
dense subspace of L2(Ω), we can invoke the Riesz representation theorem and obtain
a unique fu ∈ L2(Ω) s.t.

〈u,−∂jv〉 = 〈fu, v〉 .

Let (−∂j)c = ∂j with domain

dom
(
(−∂j)c

)
:= C∞

cc (Ω) .
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This is a densely-defined operator in L2(Ω) and hence, it admits a unique maximal
adjoint (∂j)

∗
c. Its domain is precisely

dom
(
(−∂j)∗c

)
=
{
u ∈ L2

∣∣ ∃f ∈ L2 ∀v ∈ C∞
cc :
〈
u, (−∂j)cv

〉
= 〈f, v〉

}
But this is precisely the domain of the operator (∂j)weak. In other words, the weak
derivative, from an operator theory point of view, is none other than the L2-adjoint
of the formal adjoint of itself. I.e.,

(∂j)weak = (−∂j)∗c .

It is also worthwhile to consider the relationship of this weak derivative to the
distributional derivative. We say that T ∈ (C∞

cc (Ω))
dual ∩ L2(Ω) if there exists a

unique Tf ∈ L2 satisfying
T [v] = 〈Tf , v〉

for all v ∈ C∞
cc (Ω). From this, we can see that

dom((∂j)weak) = dom((−∂j)∗c) =
{
u ∈ L2(Ω)

∣∣ (∂j)distu ∈ L2(Ω)
}

That is,
dom((∂j)weak) = (∂j)

−1
dist(C

∞
cc ∩ L2(Ω)) .

3.5 Maximal and minimal extensions

Let Dcc := D with dom(Dcc) := C∞
cc (M,E) and D†

cc :=
(
D†)

cc
, i.e. D† with

dom
(
D†

cc

)
= C∞

cc (M,F ). Recall that † denotes the formal adjoint, i.e.

〈Dccu, v〉L2(M,F ) =
〈
u,D†

ccv
〉
L2(M,E)

(3.7)

for all u ∈ dom(Dcc) = C∞
cc (M,E) and all v ∈ dom

(
D†

cc

)
= C∞

cc (M,F ).

Definition 3.19. We set

Dmax :=
(
D†

cc

)∗ and D†
max :=

(
D†)

max
= (Dcc)

∗ .

To be completely explicit, the following is a precise description of the maximal
extension:

dom(Dmax) =
{
u ∈ L2(M,E)

∣∣ ∃w ∈ L2(M,F ), v ∈ C∞
cc (M,F ) :

〈
u,D†

ccv
〉
= 〈w, v〉

}
=
{
u ∈ L2(M,E)

∣∣ C∞
cc ∩ L2(M,F ) 3 v 7→

〈
u,D†

ccv
〉

is L2-continuous
}

=
{
u ∈ L2(M,E)

∣∣ ∃c = c(n,D)∀v ∈ C∞
cc (M,F ) :

∣∣〈u,D†
ccv
〉∣∣ ≤ c‖v‖L2

}
.

In this calculation, the penultimate equality is via the Riesz Representation Theo-
rem.
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Remark 3.20. It is worth emphasising that that the notation D†
max is not am-

biguous. That is, we cannot have an interpretation D†
max = (Dmax)

†. This is due to
the fact that our notion of maximal extension is the unique adjoint obtained with
respect to the formal adjoint operator restricted to C∞

cc . At the heart of this lies
the fact that our notion of formal adjoint is a notion only defined for differential
operators.

From (3.7), it is clear that Dcc ⊂ Dmax and D†
cc ⊂ D†

max by the construction
of the maximal extensions. That is, dom(Dcc) ⊂ dom(Dmax) and dom

(
D†

cc

)
⊂

dom
(
D†

max

)
with graph(Dcc) ⊂ graph(Dmax). Therefore, graph(Dcc) ⊂ graph(Dmax)

since the adjoint is always a closed operator. Moreover, we obtain that graph(Dcc) =
graph

(
Dcc

)
, i.e. Dcc is closable.

Definition 3.21. We set

Dmin := Dcc and D†
min := D†

cc .

Exercise: Show that

D∗
min := (Dmin)

∗ = D†
max and

(
D†

max

)∗
= Dmin .

3.5.1 Boundary Value Problems

Let us fix an inward pointing vectorfield T along the boundary. A boundary value
problem is typically phrased as follows: given f ∈ MeasSect(M,E), solve for u ∈
MeasSect(M,E) satisfying

Du = f(
∂kTu

)
|
∂M

= fk

where k = 0, 1, . . . ,m − 1 and fk ∈
MeasSect(∂M,E).

There are two important aspects to such a formulation that we need to identify for
a systematic treatment of BVPs. The first is concerning the boundary value part,
and the second is concerning the problem part.

1. Boundary values: where do the fk live? Ideally, we would have some function
space

B ⊂ MeasSect(∂M,E)

which induces an extension DB satisfying

Dmin ⊂ DB ⊂ Dmax ,
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where

dom(DB) =
{
u ∈ dom(Dmax)

∣∣∣ (u|∂M , (∂1Tu)|∂M , . . . , (∂1Tu)|∂M) ∈ B
}

.

With this setup, we would then have fk ∈ B. The subspace B would be a
boundary condition.

2. Problem: Having fixed a boundary condition B, for which f ∈ L2(M,E),
possibly living in some subspace F , can we ‘invert’ DB?

Our primary concern here would be to address the first aspect 1, regarding boundary
conditions. Questions surrounding solvability, i.e., 2, is a whole different kettle of
fish. It is beyond the scope of our considerations.

From here on, we will be attempting to formalise and rigourise 1. To do so, we need
to pull the ‘interior’ operators, Dmin and Dmax, to the boundary ∂M .

Recall that Dmin ⊂ Dmax, both are closed operators. Equivalently, the spaces
dom(Dmin) and dom(Dmax) are Banach spaces with respect to the graph norm ‖·‖D.
Moreover, dom(Dmin) ⊂ dom(Dmax) is a closed subspace. This tells us that in order
to consider extensions Dext (possibly not closed) satisfying Dmin ⊂ Dext ⊂ Dmax, we
can equivalently consider consider subspaces dom(Dmin) ⊂ Xext ⊂ dom(Dmax).

To rigourise this thinking, we note the following abstract result.

Proposition 3.22. Let B1,B2 be Banach spaces and γ : B1 → B2 a bounded
surjection with kernel B0 := ker(γ). Then, the following hold.

I) γ induces a Banach space isomorphism γ̃ : B1⧸B0
→ B2.

II) If B0 ⊂ S ⊂ B is a subspace S, then γS ⊂ B2 is a subspace. γS is closed if
S is closed.

III) If S ′ ⊂ B2 is subspace, then γ−1S ′ is a subspace satisfying B0 ⊂ γ−1S ′ ⊂ B1.
γ−1S ′ is closed if S ′ is closed.

IV) S = γ−1(γS).

Proof. a) Ad I). The induced map γ̃ : B1⧸B0
→ B2 is canonically given by γ̃(u+B0) =

γu. The induced norm is

‖u+B0‖B1/B0
= inf

{
‖u+ b0‖B1

∣∣ b0 ∈ B0

}
.

For any b0 ∈ B0, we have, using the boundedness of γ, that

‖γ̃u‖ = ‖γ(u+ b0)‖ ≲ ‖u+ b0‖ .

Therefore, on taking an infimum over b0 ∈ B0 in this expression, we see that

‖γ̃(u+B0)‖B2
≲ ‖u+B0‖B1/B0

.

This shows that γ̃ : B1⧸B0
→ B2 is bounded. Since γ is a surjection, so is γ̃

and therefore, we conclude it is an open map from the open mapping theorem. In
addition, by construction γ̃ is injective, and therefore it is a bijection so the fact
that γ̃ is an open map yields that the inverse γ̃−1 : B2 → B1⧸B0

is bounded.
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b) The proofs of parts II) and III) are left as exercises.

c) Ad IV). S ⊂ γ−1(γS) is clear. We show γ−1(γS) ⊂ S. Let x ∈ γ−1(γS), this
means x ∈ γ−1y with y = γs for a s ∈ S. Then γx = y = γs, implying γ(x− s) = 0,
i.e. x− s ∈ B0. So we can write x = (x− s) + s ∈ B0 + S ⊂ S + S = S.

Example 3.23. B0 = dom(Dmin), B1 = dom(Dmax), B2 = dom(Dmax)⧸dom(Dmin)
and γ the quotient map.

So all subspaces and therefore extensions Dmin ⊂ Dext ⊂ Dmax can be understood
as subspaces of dom(Dmax)⧸dom(Dmin)

. The operator Dext is closed if and only if

the subspace γDext ⊂ dom(Dmax)⧸dom(Dmin)
is closed.

3.5.2 Interior to boundary via the boundary restriction map

We continue to utilise Proposition 3.22 to obtain a complete understanding of bound-
ary conditions. It is not hard to see that the spaces B0, B1 are automatically de-
termined in this setup as dom(Dmin) and dom(Dmax) respectively. There is also a
canonical map γ that is automatically determined in this setup. Consequently, B2

is also determined as the range of this map.

Having fixed an inward pointing T ∈ C∞(∂M, TM) vectorfield along ∂M , we build
the map γ by first considering the following map, the boundary restriction map:

γc : C
∞
c (M,E) →

m−1⊕
j=0

C∞
c (∂M,E),

u 7→
(
u|
∂M
, (∂Tu)|∂M , . . . ,

(
∂m−1
T u

)
|
∂M

)
.

In order to formulate boundary conditions using Proposition 3.22, we desire (and
more seriously, require) the following.

[Req 1] The map γc should be extended to γ, in some bounded manner, acting on the
whole of dom(Dmax).

[Req 2] We then want ker(γ) = dom(Dmin), which we expect to be automatic since

γc dom(Dcc) = γcC
∞
cc (M,E) = 0

and Dmin = Dcc.

Having such a γ satisfying [Req 1] and [Req 2], we define the Czech space

Ȟ(D) := γ dom(Dmax) ⊂ MeasSect(∂M,E) .

We topologise this space by pulling across the topology of dom(Dmax)⧸dom(Dmin)
via γ. Then

γ : dom(Dmax)⧸dom(Dmin)
→ Ȟ(D)
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is a bounded surjection with ker(γ) = dom(Dmin).

At this point, we note that we have accomplished the goal of ‘pulling’ the interior
problem to the boundary. However, all we have done is to rephrase dom(Dmax)⧸dom(Dmin)

as Ȟ(D). In order to truly understanding dom(Dmax)⧸dom(Dmin)
from data only

emerging from the boundary would require the following desire to be fulfilled.

[Req 3] Describe Ȟ(D), and in particular its topology, from data ‘only’ living on ∂M .

Having [Req 1], [Req 2] and [Req 3], and at the risk of repetition and labouring the
point, let us explicitly state the way in which we can understand extensions Dext in
terms of Ȟ(D). Invoking Proposition 3.22, we have

I) For a subspace B ⊂ Ȟ(D) define

dom(DB) := γ−1B ⊂ dom(Dmax) ,
DBu := Dmaxu for u ∈ dom(DB).

Then we have Dmin ⊂ DB ⊂ Dmax and DB is closed iff B is closed.

II) If Dmin ⊂ Dext ⊂ Dmax, define

Bext := γ dom(Dext) ⊂ Ȟ(D) ,

then we have DBext = Dext by 3.22 IV). We also have

Dext closed ⇔ Bext closed .

This leads us to the following definitions.

Definition 3.24. We call a closed subspace B ⊂ Ȟ(D) a boundary condition for
D.

We call a general subspace B ⊂ Ȟ(D) (not necessarily closed) a generalised bound-
ary condition.

A boundary condition is then a closed generalised boundary condition.

In either case, the associated operator DB is given by

dom(DB) = γ−1B ,
DBu = Dmaxu for u ∈ dom(DB).

Obtaining the desirable conditions [Req 1], [Req 2] and [Req 3] requires us to un-
derstand more sophisticated technical machinery. In addition, there are certainly
a number of obstacles, geometric and otherwise. The viability of these desires, in
terms of examples, are pointed out below.
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1. Ad [Req 1]. Let N := S1, M := [0, 1)× S1, g := dt⊗ dt+ gS1 .

M is a manifold with boundary ∂M = {0} × S1. Consider the Hodge-Dirac
operator DH = d + d†g, then γu = u|∂M . But we cannot have a surjection
dom(Dmax) →

{
u|∂M

∣∣∣ u ∈ dom(Dmax)
}

. This arises from the ‘incomplete-
ness’ of the metric near the end {1} × S1. Intuitively, the issue is that a
section can take a nonzero value near the end {1}×S1, which cannot be seen
by the boundary restriction map. In this situation, we really need to ‘add’ the
topological boundary {1} × S1 and consider the map u|{0,1}×S1 .

This is a geometric concern, not a topological one. For instance, take the
space M ′ = [0,∞)× S1 with the same metric g = dt⊗ dt+ gS1 . In this case,
it is possible to control dom(Dmax)⧸dom(Dmin)

purely in terms of the map
u 7→ u|0×S1 . However, it is easy to see that M and M ′ are diffeomorphic to
each other. It is their metric structures that are different.

A condition to prevent this situation is to ask for C∞
c (M,E) to be dense in

dom(Dmax).

2. Ad [Req 2]. Also ker(γ) = dom(Dmin) follows from and requires the density of
C∞

cc (M,E) in dom(Dmax).

3. Ad [Req 3]. This is possible to a large extent for general-order operators, and
even more so for first-order operators. A significant portion of this text will
be dedicated to this point.

Exercise 3.25. IfM is compact with boundary, then C∞
c (M,E) is dense in dom(Dmax).

Let us finish this section with the following result, which is a consequence of an
important theorem due to Chernoff [16]. It illustrates the way in which completeness
of a metric guarantees favourable conditions on powers of first-order operators.

Theorem 3.26. Suppose (M, g) is a complete Riemannian manifold without
boundary and D ∈ Diff1(E) is formally self-adjoint. Furthermore, suppose that
there exists a constant C <∞ such that

|σD(x, ξ)| ≤ C|ξ|g(x) ,
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where the first is the operator norm. Then,

dom
((
Dk
)
max

)
⧸dom

((
Dk
)
min

) = 0 .

In this case, the operator Dk
cc is self-adjoint. In the literature, when a formally

self-adjoint differential operator has a unique closure that is self-adjoint as in this
situation, it is sometimes said to be essentially self-adjoint.

3.6 Sobolev spaces on vector bundles

To avoid notational and technical complications, from here on, we will restrict our
attention to K = C. However, as a remark, let us point out that many results
pertaining to the case K = R can be obtained through complexification and then
restriction of the results in the C case. Moreover, our discussion of Sobolev spaces
will be constrained purely to the L2 context, although, a similar construction can
be carried out in Lp.

Let us first start by recalling the L2 Sobolev spaces for systems over Rn, i.e., the
case M := Rn and E := Rn × CN . For k ∈ N, these spaces are defined as

Hk(Rn,CN) :=
{
u ∈ L2

(
Rn,CN

) ∣∣∣ ∀j ≤ n :
(
∇j
)
max

u ∈ L2
(
Rn,CnjN

)}
,

with norm

‖u‖2Hk =
k∑
j=1

∥∥∇ju
∥∥2
L2 + ‖u‖2L2 .

Here, the powers of ‘gradient’ operators ∇j of Rn and CN are

∇ju =
∑
|α|=j

(
∂|α|

∂xα
ui
)
eα ⊗ ei ,

where ei is the canonical basis of CN and eα the basis for Cnj written in multi-
index form. It is easily seen that these operators are obtained from the Levi-Civita
connection of the standard Euclidean metric, as well as the canonical compatible
metric on CN with respect to the standard Hermitian product there. Therefore,
within this definition, the implicit flat geometry of Rn and CN is hidden.

Now let M be any manifold with boundary and E → M a vector bundle. Having
identified the underlying geometry of the classical Sobolev scales, the additional
data required to formulate Sobolev spaces on E is clear. We require a metric hE
and a connection ∇E on E, and a metric g on M and a connection ∇T ∗M on
T ∗M . Moreover, since we require these spaces to sit inside L2(M,E), we require a
smooth positive density µ on M . It is worth emphasising that we do not assume
compatibility between the respective metrics and connections.
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For u ∈ C∞(E) we have ∇Eu ∈ C∞(T ∗M ⊗ E) and recall the induced connection
∇T ∗M⊗E on T ∗M ⊗ E obtained by enforcing the Leibniz rule for every direction
X ∈ C∞(M,TM), i.e.

∇T ∗M⊗E
X (u⊗ v) = ∇T ∗M

X u⊗ v + u⊗∇E
Xv .

By induction get ∇T (j,0)M⊗E.

In what is to follow, to emphasise both connections in the notation, we define(
∇E,∇T ∗M

)j
: C∞(E) → C∞(T ∗M⊗j ⊗ E

)
by (

∇E,∇T ∗M
)1

:= ∇E ,(
∇E,∇T ∗M

)j+1
:= ∇T ∗M⊗j⊗E ◦

(
∇E,∇T ∗M

)j .

Then
(
∇E,∇T ∗M

)j ∈ Diffj
(
E, T (j,0)M ⊗ E

)
.

Definition 3.27. We define the following Sobolev spaces:

Hk
(
M,E;hE, g,∇E,∇T ∗M , µ

)
:=

k⋂
j=1

dom
(((

∇E,∇T ∗M
)j)

max

)
with norm

‖u‖2Hk := ‖u‖2L2(M,E) +
k∑
j=1

∥∥∥(∇E,∇T ∗M
)j
u
∥∥∥2
L2(M,T (j,0)M⊗E)

,

and
Hk

0

(
M,E;hE, g,∇E,∇T ∗M , µ

)
:= C∞

cc (E)
∥·∥

Hk .

It is clear from inspection that

Hk
0

(
M,E;hE, g,∇E,∇T ∗M , µ

)
=

k⋂
j=1

dom
(((

∇E,∇T ∗M
)j)

min

)
.

Furthermore, it is immediate from construction that:

Hk+1
(
M,E;hE, g,∇E,∇T ∗M , µ

)
⊂ Hk

(
M,E;hE, g,∇E,∇T ∗M , µ

)
and

Hk+1
0

(
M,E;hE, g,∇E,∇T ∗M , µ

)
⊂ Hk

0

(
M,E;hE, g,∇E,∇T ∗M , µ

)
.

In practice, all the data which we have identified explicitly is fixed, and therefore, to
make the notation less verbose, these spaces are simply denoted by Hk(M,E) and
Hk

0(M,E).

Often, ∇T ∗M is induced by the Levi-Civita connection to g. If the connection on
T ∗M is clear, the shorthand

(
∇E
)j

:=
(
∇E,∇T ∗M

)j is used.
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Example 3.28. 1. (M, g) Riemannian manifold, E := T (p,q)M , ∇T ∗M induced
from Levi-Civita, ∇E = ∇T (p,q)M induced connection, and dµ = d volg is the
induced volume measure from g. Then

Hk
(
M,T (p,q)M

)
=
{
u ∈ L2

(
M,T (p,q)M

) ∣∣ ∀j ≤ n :
(
∇ju

)
max

∈ L2
(
M,T (p+j,q)M

)}
.

2. For p = q = 0, i.e. for E =M × C whose sections are functions, write Hk(M)
and Hk

0(M). These spaces are studied in [27] by Hebey.

3. Let us now explicitly consider the way that geometry manifests itself in Sobolev
spaces as they have been defined.

a) If M = Rn, E = Rn × C, then

Hk(Rn) = Hk
0(Rn) .

It is a classical fact, which can be easily seen using the Fourier transform,
that

H2k(Rn) = dom
(
∇k

max

)
= dom

(
∆k

max

)
= dom

(
∆k

min

)
.

b) Now let (M, g) be a complete Riemannian manifold without boundary.
Then it is easily verified, by using the fact that completeness is equivalent
to the precompactness of arbitrarily large geodesic balls, that H1

0(M) =
H1(M) (on functions).

Do we have H2(M) = H2
0(M)? In general, without additional assump-

tions, this is unlikely to be true. Understanding when we have equality
is an ongoing research question.

Intuitively, from a geometric perspective, we expect curvature at ‘infinity’
to interfere with such an equality. Analytically, this can be seen by
understanding why H1

0(M) = H1(M). The crux of the matter here is
that, by using the precompactness of arbitrarily large geodesic balls, we
are able to find a smooth cutoff functions with appropriate control on
its gradient. This allows for a H1(M) function to be approximated by a
sequence of compactly supported functions, which can now be smoothed
and remain compactly supported. To replicate this argument for a H2

0(M)
function would require controlling the second derivative of the smooth
cutoff, and it is here where we anticipate curvature considerations near
infinity to dominate.

Let us now try and understand a sufficient curvature condition to obtain
this equality. Through the results in [16], we obtain

dom
(
∆k

max

)
⧸dom

(
∆k

min

) = 0 .

The case that is of interest to us in this example, k = 1, dates even
further back to the works of Gaffney [20], Wolf [50] and Cordes [17].
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Another useful gadget is Bochner’s formula:

1

2
∆
(
|∇u|2g

)
= g(∇∆u,∇u) +

∣∣∇2u
∣∣2 +Ricg(∇u,∇u) .

Now, if there is an η ∈ R with Ricg ≥ ηg (as bilinear forms), which in
the literature is often called a uniform lower bound on Ricci curvature,

H2
0(M) = H2(M) .

Exercise 3.29. Using these ingredients, prove this equality. Hint: since
we are in the setting where ∇ is the Levi-Civita connection, compare ∇2

to ∆ and study their domain containments.

Our goal is to now build ‘local’ versions of Sobolev spaces. In order to do this, we
first present the following perturbation result. Note that by dom(Dmax;hi, µi), we
mean the domain of the maximal extension of D with respect to a metric hi and
measure µi.

Proposition 3.30. Let D ∈ Diffm(E) and let h1, h2 be metrics on E and µ1, µ2

smooth positive densities on M . Let

〈u, v〉i :=
∫
M

hi[u, v] dµi .

If U ⊂ M open, U ⊂ M compact, ξ ∈ MeasSect(E) with spt(ξ) ⊂ U , then the
following hold.

I) ξ ∈ L2(M,E;h1, µ1) ⇔ ξ ∈ L2(M,E;h2, µ2).

II) ξ ∈ dom(Dmax;h1, µ1) ⇔ ξ ∈ dom(Dmax;h2, µ2).

Moreover, there is a C = C(U, hi, µi) ≥ 1 s.t.

C−1|Dξ|h1 ≤ |Dξ|h2 ≤ C|Dξ|h1 .

Proof. a) Ad I). Since hi, µi are smooth, there is a C ≥ 1 s.t. for all x ∈ U we have

C−1|v|h1(x) ≤ |v|h2(x) ≤ C|v|h1(x)

for all v ∈ Ex, and

dµ1

dµ2

(x) ≤ C and dµ2

dµ1

(x) ≤ C .

Therefore, for ξ as in hypothesis, we have I).

b) Ad I). First, note that by fibrewise considerations, we can find B ∈ End(E) s.t.
h1[u, v] = h2[Bu, v] for all u, v ∈ Ex. Moreover, using the precompactness of U , we
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can find V open, V compact, U ⊂ V . As in the proof of I), we can find C2 = C2(V )
such that inside V ,

|B|hi ≤ C2 and dµ1

dµ2

+
dµ2

dµ1

≤ C2 .

Let D†
i be the formal adjoint w.r.t. hi. Suppose ξ ∈ dom(Dmax, h1, µ1) and w ∈

C∞
cc (M,E).

Then, setting B̃ := B dµ1
dµ2

, we obtain〈
ξ,D†,1w

〉
1
= 〈Dξ,w〉1 =

〈
B̃Dξ, w

〉
2
=
〈
Dξ, B̃∗w

〉
2
=
〈
ξ,D†,2B̃∗w

〉
2

.

Let χ ∈ C∞(M, [0, 1]) such that χ|U = 1 and χ|M\V = 0. Given w̃ ∈ C∞
cc (M,E),

w :=
(
B̃∗
)−1

w̃ ∈ C∞
cc (M,E) we have

〈
ξ,D†,2w̃

〉
2
=

〈
χξ,D†,1

(
B̃∗
)−1

w

〉
1

.

Therefore,∣∣〈ξ,D†,2ω̃
〉
2

∣∣ ≤ C2

∥∥∥∥(B̃∗
)−1

w̃

∥∥∥∥
L2(V,E,h1,µ1)

≲ ‖w̃‖L2(V,E,h1,µ1)

≲ ‖w̃‖L2(V,E,h2,µ2)
≲ ‖w̃‖L2(M,E,h2,µ2)

.

Therefore, ξ ∈ dom(Dmax, h2, µ2). The reverse argument follows mutatis mutandis.

The estimate in the conclusion is then immediate.

Corollary 3.31. Let U ⊂ M open with U ⊂ M compact. Suppose that
gi, h

E
i ,∇E

i ,∇T ∗M
i , µi for i = 1, 2 are two sets of metrics, connections, and smooth

positive densities. Then u ∈ L2
(
M,E, hE1

)
with spt(u) ⊂ U satisfies

u ∈ Hk
(
M,E, g1, h

E
1 ,∇E

1 ,∇T ∗M
1 , µ1

)
⇔ u ∈ Hk

(
M,E, g2, h

E
2 ,∇E

2 ,∇T ∗M
1 , µ2

)
and there is a constant Ck ≥ 1 s.t.∣∣∣(∇E

1 ,∇T ∗M
1

)k
u
∣∣∣
(g1,hE1 )

'Ck

∣∣∣(∇E
2 ,∇T ∗M

2

)k
u
∣∣∣
(g2,hE2 )

.

Proof. We apply Proposition 3.30, with E ⊕
(
T (k,0)M ⊗ E

)
in place of E and

D =

[
0 0

(∇E
1 ,∇T ∗M

1 )k 0

]
.

Directly applying Proposition 3.30 to ∇E
1 = ∇E

2 and ∇T ∗M
1 = ∇T ∗M

2 gives the desired
for changing metrics and measures. For allowing a change of connections, observe
that (

∇E
1 ,∇T ∗M

1

)k − (∇E
2 ,∇T ∗M

2

)k ∈ Diffj−1

(
E, T (k,0)M ⊗ E

)
.
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Lemma 3.32. If u ∈ dom(Dmax) and χ ∈ C∞
c (M), then χu ∈ dom(Dmax). Simi-

larly for dom(Dmin).

In particular,

u ∈ Hk
(
M,E, hE, g,∇E,∇T ∗M

)
⇒ χu ∈ Hk

(
M,E, hE, g,∇E,∇T ∗M

)
.

By Corollary 3.31, for any choices of metrics, connections and densities, we have
that

χu ∈ Hk
(
M,E, hE1 , g1,∇E

1 ,∇T ∗M
1 , µ1

)
⇔ χu ∈ Hk

(
M,E, hE2 , g2,∇E

2 ,∇T ∗M
2 , µ2

)
.

This leads us to the following definition.

Definition 3.33. We say u ∈ Hk
loc(M,E) if u ∈ MeasSect(E) and there are

hE, g,∇E,∇T ∗M , µ s.t. for all χ ∈ C∞
c (M) with sptχ having nonempty interior,

χu ∈ Hk
(
M,E, hE, g,∇E,∇T ∗M , µ

)
.

We equip Hk
loc(M,E) with a family (%χ) of semi-norms, indexed over χ ∈ C∞

c (M)
with sptχ having nonempty interior, given by

%χ(u) := ‖χu‖Hk .

The space Hk
loc(M,E), with the semi-norms %χ is then a locally convex topological

vector space.

Proposition 3.34. We have u ∈ Hk
loc(M,E) iff for all trivialising charts (U, ψ,Ψ)

Ψ ◦ u|U ◦ ψ−1 ∈ Hk
loc

(
ψ(U)︸ ︷︷ ︸
⊂Rn

+

,CN
)

.

Proposition 3.35. Let M ′ be compact and E → M ′ a vector bundle. Then for
any hE, g,∇E,∇T ∗M , µ we have

Hk
(
M,E, hE, g,∇E,∇T ∗M

)
= Hk

loc(M,E)

and
Hk

0

(
M,E, hE, g,∇E,∇T ∗M

)
=
{
u ∈ Hk

loc(M,E)
∣∣∣ spt(u) ⊂ M̊

}
.

Proposition 3.36. If M ′ is compact and ∂M ′ = ∅, then

Hk
loc(M,E) = Hk(M,E) = Hk

0(M,E) .
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3.7 Fractional Sobolev spaces

To understand the space of boundary conditions, it is of vital importance to be
able to define Sobolev spaces with a non integer exponent. Although we will only
consider this for the case M ′ is compact without boundary, we need to take care in
ensuring that these spaces are consistent with the Euclidean picture.

Let us first consider the case of Rn. Recall that the Fourier transform maps partial
derivatives to an appropriate multiplication in the frequency space. I.e.,

(F∂ju)(ξ) = ξj(Fu)(ξ) .

With this, we can see that

Hk(Rn) =
k⋂
j=1

dom
(
∇k
)

=
{
u ∈ L2(Rn)

∣∣ ∀i ≤ k, j ≤ n :
(
ξ 7→ ξij(Fu)(ξ)

)
∈ L2(Rn)

}
=
{
u ∈ L2(Rn)

∣∣∣ (ξ 7→ |ξ|k(Fu)(ξ)
)
∈ L2(Rn)

}
.

(3.8)

Recall ∆u = −
∑

i ∂
2
i u. Therefore, for an appropriately chosen normalising constant

c to match the flavour of Fourier transform used,

(F∆u)(ξ) = c|ξ|2(Fu)(ξ) .

Therefore, we can write the Laplacian as

∆u(x) = c

∫
|ξ|2(Fu)(ξ)e2πi⟨x,ξ⟩f dξ ,

with domain

dom(∆) =
{
u ∈ L2(Rn)

∣∣ (ξ 7→ |ξ|2(Fu)(ξ)
)
∈ L2(Rn)

}
.

This gives a method of constructing a fractional power of the Laplacian by defining:

dom
(
∆

k
2

)
:=
{
u ∈ L2(Rn)

∣∣∣ (ξ 7→ |ξ|k(Fu)(ξ)
)
∈ L2(Rn)

}
,

∆
k
2u := F−1

(
ξ 7→ |ξ|k(Fu)(ξ)

)
.

Given α ∈ R≥0 we obtain the fractional Sobolev space

Hα(Rn) :=
{
u ∈ L2

∣∣ (ξ 7→ |ξ|αF (u)(ξ)) ∈ L2(Rn)
}
= dom

(
∆

α
2

)
.

Clearly, this is consistent with Fourier transform characterisation of the integer
Sobolev spaces describe in (3.8).

Taking this a step further, for a Borel measurable function f : R → R, define

dom(f(∆)) :=
{
u ∈ L2(Rn)

∣∣ (ξ 7→ f
(
|ξ|2
)
(Fu)(ξ)

)
∈ L2(Rn)

}
,

f(∆)u := F−1
(
ξ 7→ f

(
|ξ|2
)
F (u)(ξ)

)
.
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3.8 Operator theoretic characterisation

The non-local nature of fractional powers of the Laplacian on Rn means that it is
not obvious whether we can obtain fractional Sobolev spaces through localisation.
In any case, it will be to our advantage to see the Sobolev spaces from a global
point of view as well as a local point of view. For that, we require an operator
theoretic characterisation of fractional powers, with a tool equivalent to the Fourier
transform, but which lends itself to generalisation to the manifold context.

Let H be a Hilbert space and T : H → H self-adjoint, i.e. T is densely-defined
and T ∗ = T . That is, T is symmetric, i.e. ∀u, v ∈ dom(T ) : 〈Tu, v〉 = 〈u, Tv〉, and
additionally dom(T ∗) = dom(T ) and Tu = T ∗u. For such an operator, there is a
‘measure’ valued in H s.t.

Tu =

∫
R
λ dET (λ)[u]︸ ︷︷ ︸

∈H

for all u ∈ dom(T ).

The measure here is called the spectral measure, and the existence of this measure,
often called the spectral theorem, is a cornerstone result in the theory of self-adjoint
operators. A detailed discussion of it can be found in Chapter 13 in [42] by Rudin. In
later parts, we shall return to this topic, including the construction of this measure,
but from a different point of view.

For a continuous function f : R → R, define

dom(f(T )) :=

{
u ∈ H

∣∣∣∣ ∀R > 0:

∫
[−R,R]

|f(λ)|2 ‖dET (λ)[u]‖2 < C

}
,

f(T )u :=

∫
R
f(λ) dET (λ)[u] .

We remark that, in fact, the measure dET is a Borel measure, and the above
definition could be extended to Borel functions. However, for the moment, we shall
only require this for the continuous case.

Note that if ‖f‖L∞(R) < ∞, then f(T ) ∈ B(H) is self-adjoint. In fact, for f = id
we have f(T ) = T and therefore

‖f(T )‖H→H ≤ ‖f‖L∞(R) .

Example 3.37. For the Laplacian ∆ on Rn, for an appropriately chosen normali-
sation constant c > 0,

cF−1
((
ξ 7→ f

(
|ξ|2
))

F (u)
)
=

∫
R
f
(
λ2
)
dET (λ)[u] .

That is, the functions of the operator we take using the spectral theoretic approach
is consistent with our earlier approach using the Fourier transform. In particular,

∆
k
2u =

∫
λ

k
2 dE∆(λ)[u] .
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In what is to follow, here and in later parts, we need the following important result
pertaining to the regularity of elliptic differential operators.

Theorem 3.38 (Elliptic regularity). Let M ′ be a compact manifold without
boundary,

(
E, hE

)
and

(
F, hF

)
Hermitian vector bundles over M ′, and D ∈

Diffm(E,F ) elliptic. Then

dom(Dmax) = dom(Dmin) = Hm(M ′, E)

and
‖u‖D ' ‖u‖L2 + ‖Du‖L2 ' ‖u‖Hm .

We do not provide a detailed proof of this fact, but rather a sketch of a proof to
highlight the salient properties underpinning its validity.

Proof sketch. For D ∈ Diffm(E,F ), the direction Hm(M ′, E) ⊂ dom(Dmax) is clear.

Recall that for a differential operator D, we for u supported inside a trivialising
chart,

Du =
∑
|α|=m

Aα(x)
∂m

∂xα
u+ L

where the L are the lower order terms. It is easy to see that for u ∈ dom(Dmax),
we obtain that that u ∈ dom(Aα∂mxα) for all |α| = m. If D is elliptic, then Aα is
invertible. From this, we obtain that u ∈ Aα dom(∂mxα). Again using the smoothness
and invertibility of Aα, we can assert that u ∈ ∩|α|=m dom(∂mxα).

We are left with understanding why ∩|α|=m dom(∂mxα) = Hm(Rn). For the sake
of simplicity, consider assume that m = 2. Now, take v ∈ dom(∂2

x2i
). Since by

construction v ∈ L2(Rn), we have that∥∥∥∥ ∂

∂xi
v

∥∥∥∥2 = 〈 ∂

∂xi
v,

∂

∂xi
v

〉
= −

〈
∂2

∂x2i
v, v

〉
≤
∥∥∥∥ ∂2∂x2i v

∥∥∥∥‖v‖ .

I.e. v ∈ ∩ni=1 dom(∂xi) = H1(Rn). The main point here is that, as long as v ∈ L2(Rn)
to begin with, when higher derivatives of v are in L2, so are lower derivatives. There
are Sobolev spaces known as homogeneous Sobolev spaces where we would not be
able to make the assertion that v ∈ L2, but they are a totally different school of
dolphins, and we shall never be concerned with them in the manifold context.

Together with this, we can now assert that u ∈ Hm(Rn). Since M ′ is compact,
we can institute a finite and smooth partition of unity subordinate to some chosen
set of trivialising charts and conclude that dom(Dmax) = Hm(M ′, E) using Proposi-
tion 3.36.

The conclusion dom(Dmin) = dom(Dmax) follows from showing that dom(Dmin) =
Hm

0 (M
′, E) and invoking Proposition 3.36.
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Armed with elliptic regularity, let us now construct fractional Sobolev scales. Fix
connections ∇ on E and M ′. Let

∆c := ∇†
c∇c ∈ Diff2(E) ,

which is easily verified to be elliptic. Let

∆ := ∆max = (∇c)
∗(∇c) .

Then, by elliptic regularity, dom(∆) = H2(M ′, E), ∆k
c ∈ Diff2k(E) is elliptic, and

∆k = (∆max)
k =

(
∆k
)
max

.

Again, by elliptic regularity

dom
(
∆k
)
= H2k(M ′, E) and ‖u‖∆k ' ‖u‖H2k .

The function fα(x) = x
α
2 is continuous, and therefore, we obtain fα

2
(∆). It is readily

verified that fm(∆) = ∆m and therefore, the following definition is consistent.

Definition 3.39. For α ∈ R>0 define

Hα
∆(M

′, E) := dom
(
∆

α
2

)
,

‖u‖2Hα
∆
:=
∥∥∆α

2 u
∥∥
L2(M ′,E)

+ ‖u‖2L2(M ′,E) .

As we expect, the space of higher order fractional derivatives (with respect to this
reference connection and induced Laplacian) are contained in the space of lower
orders.

Proposition 3.40. We have that ∆β ⊂ ∆α for β ≥ α.

Proof. This is evident from examining the integral defining the fractional power, as
well as its domain.

By elliptic regularity, H2m
∆ (M ′, E) = H2m(M ′, E) for m ∈ N. That is, at even

integer points along the fractional scale, we obtain spaces which are independent
of the operator. In the forthcoming section, we show the whole scale can be made
independent of initial connection.

However, this is not a straightforward exercise of localisation into Euclidean charts.
A priori, localisation is possible when the operator is local. Recall that T is a local
operator on L2(M ′, E) iff spt(Tu) ⊂ spt(u) for all u ∈ dom(T ). We asserted in
Proposition Proposition 3.4 that all differential operators are local. In particular,
∆k is local for k ∈ N. However, when α ∈ R>0 \ N, this is no longer true. This is
best understood by examining the concrete case of the Euclidean Laplacian.
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3.9 Interpolation theory for Banach spaces

The strategy we undertake to divorce the space Hα
∆(M

′, E) from the operator ∆ is
to obtain this space as an ‘intermediate space’ between two even exponents. An
important and powerful mathematical tool to achieve this is the theory of interpo-
lation for Banach spaces. The method we demonstrate here is the so-called complex
method applicable to complex Banach spaces, due to Lions in [38] and Calderón in
[14]. Modern treatments of this material are abundant, with two references being
the book [49] by Triebel as well as [26] by Haase.

We emphasise, as we did before, and in particular since we only discuss the complex
method, that K = C.

Definition 3.41. Let B be a complex Banach space and Ω ⊂ C an open set.
Then f : Ω → B is

• holomorphic, if
f ′(z) := lim

h→0

f(z + h)− f(z)

h
,

exists for all z ∈ Ω, and

• weakly holomorphic, if (% ◦ f) : Ω → C is holomorphic for all % ∈ B∗.

Obviously holomorphic implies weakly holomorphic. However, the converse is also
true.

Theorem 3.42. Weakly holomorphic implies holomorphic.

This is a particularly useful tool as it allows many of the results pertaining to
holomorphic complex valued functions to be ‘lifted’ to the Banach space holomorphic
setting.

Definition 3.43. For Banach spaces B1 and B2, the pair (B1,B2) is called an
interpolation couple, if there exists a Banach space B3 s.t. Bi ⊂ B3 and Bi ↪→ B3

is continuous (i = 1, 2).

An interpolation couple (H1,H2) of Hilbert spaces is called an Hilbert interpolation
couple.

Remark 3.44. 1. In the literature, the notion of an interpolation couple is
slightly different to our definition here (albeit superficially). Typically, it is
only assumed that B1 and B2 can be continuously embedded into a space B3,
rather than assuming they are, in fact, subspaces of B3 as we have required.
We assume they are subspaces for convenience, and since this is always true
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in the applications we have in mind. Moreover, since Bi can be identified
with its image under the embedding, this is a moot point.

2. The role of the space B3 is purely of an auxiliary nature. The continuous
embedding divorces any significance to a particular B3, and simply provides
an ‘ambient’ vector space structure to form the sum B1 + B2.

Example 3.45. 1. For B1 = Hj(M ′, E) and B2 = Hj+k(M ′, E), we have that for
a choice of B3 = L2(M ′, E),

‖u‖L2 ≲ ‖u‖L2 +
ℓ′∑
ℓ=1

∥∥∇ℓu
∥∥ ' ‖u‖H1 ,

for `′ = j or j + k.

2. B1 := H2j(M ′, E), B2 := H2(j+1)(M ′, E), B3 := L2(M ′, E). Clearly Hk(M,E) ⊂
L2(M ′, E) and

‖u‖L2(M ′,E) ≲ ‖u‖+
∥∥∆j−m+1u

∥∥ ' ‖u‖H2(j−m+1)(M ′,E)

due to elliptic regularity.

3. For B1 = Hj(M ′, E) and B2 = Hj+k(M ′, E) for k > 0, we can choose B3 = B1.

4. For B1 = Hα
∆(M

′, E) and B2 = Hβ
∆(M

′, E) where α ≤ β, we can choose
B3 = L2(M ′, E) or B3 = Hϑ

∆(M
′, E), for ϑ ≤ α due to Proposition 3.40.

The goal is to obtain Banach spaces [B1,B2]ϑ, sandwiched as B1 ∩ B2[B1,B2]ϑ ⊂
B1 ∩ B2 ⊂ B3, in some manner controlled by a parameter ϑ. In applications, it
is significant that the ‘endpoints’ B1 ∩ B2 and B1 + B2 as well as the sandwiched
spaces [B1,B2]ϑ should be continuously embedded in B3. In order to obtain such a
construction, we topologise the endpoint spaces in the following manner.

Definition 3.46. For B1 + B2 = {b1 + b2 ∈ B3 | bi ∈ Bi} define

‖x‖B1+B2
:= inf

{
‖b1‖B1

+ ‖b2‖B2

∣∣ x = b1 + b2
}

.

For B1 ∩ B2, define
‖x‖B1∩B2

:= ‖x‖B1
+ ‖x‖B2

.

Proposition 3.47. Then
(
B1 + B2, ‖·‖B1+B2

)
and

(
B1 ∩ B2, ‖·‖B1∩B2

)
are Banach

spaces which are continuously embedded in B3.

Proof. This follows from the fact that B1 and B2 are continuously embedded in B3.
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Note that the spaces B1 + B2 and B1 ∩ B2 are typically not closed subspaces of B3.
In fact, we will see that for closed subspaces, the obtained intermediate spaces are
trivial.

Now, let
S := {x+ iy ∈ C | x ∈ [0, 1], y ∈ R} ⊂ C .

be the closed vertical strip in the complex plane between 0 and 1.

Definition 3.48. Let F(B1,B2) be the space of interpolation functions f : S →
B1 + B2 s.t.

(I) f ∈ Cb(S,B1 + B2), where Cb denotes continuous and bounded,

(II) f |S̊ : S̊ → B1 + B2 is holomorphic, and

(III) t 7→ f(it) ∈ Cb(R,B1) and t 7→ f(1 + it) ∈ Cb(R,B2).

The norm on F(B1,B2) is

‖f‖F(B1,B2)
:= max

{
sup
t∈R

‖f(it)‖B1
, sup
t∈R

‖f(1 + it)‖B2

}
.

Armed with this function space, which recovers the endpoint spaces in an appropri-
ate manner, we define the interpolation scale between B1 ∩ B2 and B1 + B2.

Definition 3.49. For ϑ ∈ [0, 1], define the interpolation spaces

[B1,B2]ϑ := {f(ϑ) | f ∈ F(B1,B2)} ,

‖b‖[B1,B2]ϑ
:= inf

{
‖f‖F(B1,B2)

∣∣∣ f(ϑ) = b
}

.
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Theorem 3.50. Let (B1,B2) and
(
B̃1, B̃2

)
be interpolation couples. Then:

I) The space
(
[B1,B2]ϑ, ‖·‖[B1,B1]ϑ

)
is a Banach space satisfying

B1 ∩ B2 ⊂ [B1,B2]ϑ ⊂ B1 + B2 .

The inclusion maps here are all continuous.

II) The space B1 ∩ B2 is dense in [B1,B2]ϑ for all ϑ ∈ [0, 1].

III) If the operator T : B1+B2 → B̃1+ B̃2 restricts to bounded maps T : B1 → B̃2

and T : B2 → B̃2, then

T : [B1,B2]ϑ →
[
B̃1, B̃2

]
ϑ

is also bounded. We have the norm estimate

‖T‖[B1,B2]ϑ→[B1,B2]ϑ
≤ ‖T‖1−ϑB1

‖T‖ϑB2
.

Remark 3.51. Suppose that B1 ⊂ B2 = B3. Then, B1 ⊂ [B1,B2]ϑ ⊂ B2. This is
the usual situation that we will encounter in applications.

However, if the space B1 is closed in B2, interpolation will not yield any interesting
spaces. This is because by Theorem 3.50 II), we have that B1 is dense in [B1,B2]ϑ.
This means that if B1 is a closed subspace of B2, we have for all ϑ ∈ [0, 1] that
[B1,B2]ϑ = B1. In particular, interpolation theory is not an effective tool in finite
dimensions.

For our purposes, what is vital is to connect interpolation scales to fractional powers
of self-adjoint operators in Hilbert spaces.

Proposition 3.52. Let (H1,H2) be a Hilbert interpolation couple continuously
embedding into a Hilbert space H3, and S a non-negative self-adjoint operator on
H3 with dom(S) = H1, dom(S2) = H2. Then

[H1,H2]ϑ = dom
(
(S2)

1
2
(1+ϑ)

)
= dom(S1+ϑ) .

Corollary 3.53. Let ∆1,∆2 be two Laplacians (i.e. w.r.t. two connections) on
E →M ′. Then

Hα
∆1
(M ′, E) = Hα

∆2
(M ′, E) .
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Proof. Fix α s.t. 2m+ 2 > α > 2m.

H2m+2
∆i

(M ′, E) = dom
(
∆2m+2
i

)
H2m(M ′, E) = dom

(
∆2m
i

)
By elliptic regularity, dom

(
∆k

1

)
= dom

(
∆k

2

)
for the choices of k = m and k = m+1.

Choosing Hi appropriately and H3 = L2(M ′, E), for ϑ ∈ (0, 1), we obtain[
H2m

∆1
(M ′, E),H2m+2

∆1
(M ′, E)

]
ϑ︸ ︷︷ ︸

=H
2(m+ϑ)
∆1

(M ′,E)

=
[
H2m

∆2
(M ′, E),H2m+2

∆2
(M ′, E)

]
ϑ︸ ︷︷ ︸

=H
2(m+ϑ)
∆2

(M ′,E)

.

In particular, Hα
∆1
(M ′, E) = Hα

∆2
(M ′, E).

It now makes sense to define the fractional Sobolev spaces independent of an oper-
ator.

Definition 3.54. For any Laplacian ∆ on E →M ′ and α ∈ R>0 let

Hα(M ′, E) := Hα
∆(M

′, E) .

Remark 3.55. We could have, from the very start, defined fractional Sobolev
spaces through interpolation. However, this approach would have been disadvan-
tageous for two reasons. Firstly, it would have been unclear that, for instance,[

H1(M ′, E),H3(M ′, E)
]
ϑ= 1

2

= H2(M ′, E) .

Secondly, the spaces we obtain would be abstract, and it would be unclear what
precise relationship they have to measuring differentiability. The upshot of the
approach we have taken is to build these spaces, at least conceptually, as spaces
measuring a notion of fractional differentiability with respect to a fixed differential
operator. The interpolation scales are inevitable, as they allow us to divorce the
dependency on the operator.

Before we conclude this section, let us return to the question of localisability. As
aforementioned, ∆α on Rn is not local for α /∈ N. Therefore, it is unclear whether
we can locally relate fractional Sobolev spaces over vector bundles in a meaningful
manner to the fractional Sobolev spaces over Rn. The advantage to localisation
would be that we can understand from a multitude of different perspectives and it
would potentially provide a mechanism to import Euclidean results to the manifold
setting. Let us broach this topic by starting with the following definition.

Definition 3.56. R ∈ B(B1,B2) is a retraction if there is a S ∈ B(B2,B1) s.t.
RS = id ∈ B(B2). The operator S is called a coretraction associated to the
retraction R.
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The following is a fundamentally important result in the study of Sobolev and other
kinds of function spaces over vector bundles. It can be found as Theorem *) in [49].

Theorem 3.57 (The retraction-coretraction theorem). Let (B1,B2) and(
B̃1, B̃2

)
be interpolation couples and S ∈ B

(
B̃1 + B̃2,B1 + B2

)
a coretraction

to R ∈ B
(
B1 + B2, B̃1 + B̃2

)
which restrict to bounded coretractions and retrac-

tions on B̃i → Bi and Bi → B̃i respectively. Then

Sϑ := S|[B̃1,B̃2]
ϑ

:
[
B̃1, B̃2

]
ϑ
→ [B1,B2]ϑ

has closed range and Pϑ := SϑRϑ is a projection s.t.

Sϑ

[
B̃1, B̃2

]
ϑ
= Pϑ[B1,B2]ϑ .

Remark 3.58. Note that Sϑ :
[
B̃1, B̃2

]
ϑ
→ Sϑ

[
B̃1, B̃2

]
ϑ

is actually a Banach
space isomorphism. We first have that ‖Sϑu‖[B̃1,B̃2]

ϑ

≲ ‖u‖[B̃1,B̃2]
ϑ

, and since it
has closed range, it is an open map. However, S is a coretraction and in particular
an injection. Therefore, Sϑ has a continuous inverse.

Let (Vi, ψi,Ψi)
k
i=1 be a covering of M ′ by trivialising charts such that (Ui, ψi,Ψi)

k
i=1

is also a cover with Ui ⊂ Vi. Furthermore, let {ηi}ki=1 be a smooth partition of unity
subordinate to this cover.

Define S : H2m(M ′, E) → H2m
(
Rn,CN

)k
=×k

j=1
H2m

(
Rn,CN

)
with

Su :=
(
Ψ1 ◦ (η1u) ◦ ψ−1

1 , . . . ,Ψk ◦ (ηku) ◦ ψ−1
k

)
.

Now, let χi : Rn → [0, 1] be a smooth function such that sptχi ⊂ ψi(Vi) and χi = 1
on ψi(Ui). Define

R(v1, . . . , vk) :=
k∑
i=1

Ψ−1
i ◦ (χivi) ◦ ψi .

By the choices of the trivialisations and the cutoffs χi, we see that RS = id. There-
fore, S is a coretraction to R, and by Theorem 3.57,

SϑH
2mϑ(M ′, E) ⊂ H2mϑ

(
Rn,CN

)k ,
RϑSϑH

2m(M ′, E) = H2m(M ′, E) .

This shows that, despite the non-locality of fractional operators, we are able to
localise fractional Sobolev spaces in a meaningful manner. In particular, this allows
for Euclidean results in the fractional Sobolev scales to be imported to the manifold
setting with relative ease.
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A similar setup can be done for Sobolev spaces on a compact manifold with bound-
ary, where the localisations need to take place in Rn

+. This is particularly useful
in applications, particularly in the context of boundary value problems. One such
result is the following cornerstone theorem.

Theorem 3.59. Let (M,µ) be a measured manifold with ∂M compact and E →
M a vector bundle with metric hE. Then the boundary trace map Tr∂ :=(
u 7→ u|∂M

)
: C∞

c (M,E) → C∞
c (∂M,E) extends to a bounded map

Tr∂ : H
k
loc(M,E) → Hk− 1

2 (∂M,E)

for k ∈ Nk≥1.

The proof of this in the case of M = Rn
+ is an exercise involving the Fourier trans-

form. See, for instance, Proposition 1.6 in [45]. As aforementioned, the Euclidean
result can then be imported using the retraction-coretraction theorem.

Remark 3.60. 1. The map Tr∂ is known by many names in the literature.
Some include trace map, boundary trace map, restriction map and boundary
restriction map.

2. If M is compact with boundary, we can assert that

Tr∂ : H
α(M,E) → Hα− 1

2 (∂M,E)

is bounded for α > 1
2
. In other words,

‖Tr∂ u‖Hα− 1
2
≤ Cα‖u‖Hα .

In general we cannot get this to the critical exponent α = 1
2

as the constant
Cα → ∞ as α → 1

2
. For more general problems, we require negative order

Sobolev spaces, which we will develop in the forthcoming section.

3.10 Negative order Sobolev spaces

On a manifold M with boundary, mirroring the setup of a Euclidean domain, we
are able to setup a space of distributions. This is done in light of Corollary 3.31 and
Proposition 3.34, which allow us to duplicate the Rn setup in the manifold context.
More precisely, the space of distributions D′(M,E) = C∞

cc (M,E)dual, where the dual
is the topological dual of continuous linear functions over the space D(M,E) =
C∞

cc (M,E). The space D(M,E) is topologised via the inductive limit topology. In
the bundle context, this is obtained as follows. Choosing a connection ∇ on M and
E, as well as two metrics g and hE, and consider the semi-norms:

%K,m(f) = sup
{
|∇sf(x)|g(x),hE(x)

∣∣∣ ∀s ≤ m∀x ∈ K
}

.
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on the space DK(M,E), which are f ∈ D(M,E) with spt f ⊂ K, and where K
is a precompact open set. Topologised via these semi-norms, this turns DK(M,E)
into a locally convex linear space. The topology on D(M,E) is then obtained as
the inductive limit topology by considering the collection of subspaces DK(M,E).
Corollary 3.31 and Proposition 3.34 ensure that the construction is independent of
∇, g and hE. For details in the Rn case, see Chapter 1, Section 1 in [52].

Given a metric hE and measure µ, we consider

L2(M,E) ⊂ D′(M,E) ,

by letting f ∈ L2(M,E) act on v ∈ C∞
cc (M,E) as

f(v) := 〈f, v〉L2(M,E) .

Note that, in the case of a compact manifold M ′, we have that L2(M ′, E) =
L2
loc(M

′, E) as a set. I.e. as a set L2(M,E) is independent of a metric and mea-
sure. Obviously, the a choice of inner product on L2(M ′, E) is certainly dependent
on a choice of metric hE and density µ.

In what is to follow, let us restrict ourselves to M ′ compact with ∂M ′ = ∅.

Definition 3.61. For α > 0 define u ∈ H−α(M ′, E) if

‖u‖H−α(M ′,E) := sup
v∈Hα

0

|u[v]|
‖v‖Hα

0

<∞ .

Remark 3.62. Although the compactness and lack of boundary for M ′ means
C∞

cc (M
′, E) = C∞(M ′, E), we suggestively use the notation C∞

cc (M
′, E) as this

lends itself to the correct generalisation on manifolds with boundary.

Proposition 3.63. The map (u, v) 7→ 〈u, v〉 := u[v] is a reflexive perfect-pairing
〈H−α(M ′, E),Hα(M ′, E)〉. In particular,

Hα(M ′, E)
∗ ∼= H−α(M ′, E) .

Proof. This is evident by construction. It is reflexive since Hα(M ′, E) is a reflexive
space.

Remark 3.64. We have seen that the space of distributions D′(M,E) is a topo-
logical dual space of C∞

cc (M,E), a subspace which is contained in all the spaces
of interest to us. However, D′(M,E) is independent of connections and metrics
and therefore, it does not ‘see’ the underlying geometry of the space. In contrast,
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the Sobolev spaces, whether they be negative or positive, do. This is difficult
to appreciate in the compact setting as these spaces apparently become divorced
from the geometry. However, this is not entirely true. In the compact case, what
is interesting are the ways in which to equivalently compute the norms of these
spaces, and this will become apparent in later parts.

Through careful consideration, this setup could be replicated in the noncompact
setting. We have already seen that the positive order Sobolev spaces are affected by
geometry in the noncompact setting. When appropriately defined, the negative
order Sobolev spaces are then their dual spaces. From this point of view, the
negative order Sobolev spaces can be thought of as ‘Sobolev distributions’. Much
like the space of distributions, they provide a very large ambient space where many
interesting function spaces are continuously embedded. However, unlike the space
of distributions, in addition to their ability to encode geometry, they are a Banach
space. This latter fact makes them very useful in applications.

We now want to understand the norm ‖·‖H−α from an operator point of view. To
do this, we first note the following.

Lemma 3.65. C∞(M ′, E) is a dense subspace of H−α(M ′, E).

Proof. We leave this as an exercise. Hint: use the Hahn-Banach theorem along with
Proposition 3.63.

Since this Lemma affords us with a good dense subspace of H−α(M ′, E), which is
also a dense subspace of L2(M ′, E), we consider the norm ‖·‖H−α there. So, on
C∞(M ′, E) we compute the norm ‖·‖H−α .

Proposition 3.66. For u ∈ C∞(M ′, E),

‖u‖H−α =
∥∥(I +∆α)−1u

∥∥
L2 .

Proof. We have that ∆ is non-negative, so ∆α is non-negative also and this implies
that (I +∆α) is invertible. This is a fact we will visit in later parts. We have
ker(I +∆α) = 0, ran(I +∆α) is dense and there is a cα <∞ s.t.

‖(I +∆α)u‖ ≥ cα‖u‖ ,

we also have
‖u‖Hα ' ‖u‖+ ‖∆αu‖ ' ‖(I +∆α)u‖ .

Fix u ∈ C∞(M ′, E) ⊂ L2(M ′, E). Then

‖u‖H−α = sup
v∈Hα

|〈u, v〉|
‖v‖Hα

' sup
v∈Hα

∣∣〈(I +∆α)−1u, (I +∆αv)
〉∣∣

‖(I +∆α)v‖L2

.
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Set w := (I +∆α)v ∈ L2 and substituting back into this expression, we obtain

‖u‖H−α = sup
v∈Hα

|〈u, v〉|
‖v‖Hα

sup
w∈L2

∣∣〈(I +∆α)−1u,w
〉∣∣

‖w‖L2

'
∥∥(I +∆α)−1u

∥∥
L2 .

Note that, by Lemma 3.65, we can regard

(I +∆α)−1 : H−α(M ′, E) → L2(M ′, E) .

Proposition 3.67. Given an L2-inner product 〈L2(M ′, E),L2(M ′, E〉, i.e. met-
rics g and hE, as well as a connection ∇, there is an induced reflexive perfect-
pairing 〈Hα(M ′, E),H−α(M ′, E)〉 which agrees with 〈L2(M ′, E),L2(M ′, E)〉 on
restriction to L2(M ′, E). More precisely, the pairing is given by 〈u, v〉 =
〈(I +∆α)−1u, (I +∆α)v〉 for the induced Laplacian ∆ from ∇.

Remark 3.68. Fixing a connection ∇ on E, a natural inner product on
Hα(M ′, E) is

〈u, v〉Hα := 〈(I +∆α)u, (I +∆α)v〉 .

This can be seen more generally in our language as a reflexive pairing
〈Hα(M ′, E),Hα(M ′, E)〉. If we were to require the restriction of this pairing to
C∞(M ′, E) to equal the L2(M ′, E) inner product, it is clear that this is not the
correct pairing. The correct pairing is 〈Hα(M ′, E),H−α(M ′, E)〉 appearing in the
proposition.

The moral of the story is that, in application, the L2(M ′, E) geometry plays a spe-
cial role, and it places constraints on the relationships between the other induced
spaces. In practical terms, this means that, even in the Hilbert space setting, it
forces us to consider general perfect pairings rather than the natural inner products
alone.

3.11 Back to Boundary Conditions

Let us first recall the relevant boundary trace map for an order m differential oper-
ator. Fix an interior pointing vectorfield T along the boundary. Then,

γc : C
∞
c (M,E) →

m−1⊕
j=0

C∞(∂M,E),

u 7→
(
u|
∂M
, (∂Tu)|∂M , . . . ,

(
∂m−1
T u

)
|
∂M

)
.

Here, care needs to be taken when considering ∂Tu. This is really done by fixing
a connection ∇ in a neighbourhood of the boundary. We shall be concerned with
compact boundary and there, to understanding the mapping properties of γc, the
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specific choice of connection will be irrelevant. Given that the vectorfield T is global,
by ∂Tu, we will fix this notation to mean ‘flat’ differentiation in this direction, given
by

∂Tu = (duα(T ))eα .

Theorem 3.69. Let M be a compact manifold with boundary, D ∈ Diffm(E,F )
elliptic, T an inward pointing vector field along ∂M . Then γc extends uniquely to
a bounded map

γ : dom(Dmax) →
m−1⊕
j=0

H− 1
2
−j(∂M,E)

with dense range. Moreover,

ker(γ) = dom(Dmin) = Hm
0 (M,E) .

This yields what we wanted in [Req 1] and [Req 2] when M is compact with bound-
ary. That is, we have that

Ȟ(D) = γ dom(Dmax) ⊂
densely

m−1⊕
j=0

H− 1
2
−j(∂M,E) ,

with ker γ = dom(Dmin). Therefore, we can topologise Ȟ(D) such that it is isomor-
phic to dom(Dmax)⧸dom(Dmin)

.

What we have really achieved is a concrete description of Ȟ(D) since it sits inside
the negative Sobolev scales which we constructed concretely. Therefore, Ȟ(D) is no
longer an abstract space. We know where it lives (in a finite sum of negative order
Sobolev spaces on the boundary) and how it lives (it is densely embedded into this
sum).

3.11.1 Noncompact manifolds with compact boundary

It is not a focus here to give an explicit description of what should happen in the
situation of noncompact boundary for general-order problems, although, we will
consider this in the first-order setting in later parts. Nevertheless, let us make a
remark about this setting. Suppose that M non-compact but with ∂M compact.
These are traditionally known as exterior domains in the Euclidean context. In
order to use the pre-existing compact result, we would need to make an assumption.
The obvious natural assumption would be one we have already seen: C∞

c (M,E) is
dense in dom(Dmax).

Let us also recall an important result in the setting of manifolds with boundary.
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Theorem 3.70 (Collar neighbourhood theorem). There is an open neigh-
bourhood U ⊂M of the boundary ∂M ⊂ U s.t. U is diffeomorphic to [0, 1)× ∂M .

In the setting of compact boundary, we would obtain that
[
0, 3

4

)
× ∂M is a precom-

pact set. This would allow us to institute a cutoff χ ∈ C∞ ∩ L∞([0, 1)× ∂M, [0, 1])
s.t. χ = 1 inside

[
0, 1

2

)
× ∂M and χ = 0 on

[
3
4
, 1
)
. It is clear that for such a cutoff,

spt(dχ) ⊂
(
1
2
, 3
4

)
× ∂M and therefore, spt(dχ) is a compact set. Naturally, we can

extend χ to all of M by zero, and we identify the extension again with χ itself. Let
u ∈ dom(Dmax), un ∈ C∞(M,E), un → u. Then un = (1− χ)un + χun where χun
is compactly supported near ∂M . Then γ((1− χ)un) = 0. The desired results can
now be obtained from by reduction to the compact case. We leave it as an exercise to
consider the details of this construction, and a precise formulation of Theorem 3.69
in the setting of a noncompact manifold but with compact boundary.

3.11.2 Dismantling the Czech space

Despite the risk of repetition, let us again recall what we have done. We have man-
aged to understand the Czech space Ȟ(D) associated with D as a finite sum of neg-
ative order Sobolev spaces on the boundary. For us, this achieves [Req 1] and [Req
2]. That means we have brought the interior problem, i.e., dom(Dmax)⧸dom(Dmin)

,
to the boundary, i.e. Ȟ(D) is a function space sitting inside a sum of negative order
Sobolev spaces over the boundary.

But we would still like to resolve [Req 3]. So far, Ȟ(D) is topologised forcibly
requiring it to be Banach space isomorphic to dom(Dmax)⧸dom(Dmin)

. Resolving
[Req 3] would mean that we can understand the topology of Ȟ(D) from data intrinsic
to the boundary. Another way of putting it, we would like to dismantle or find an
equivalent topology for Ȟ(D) via data obtained from ∂M . We will show that this
is possible to a certain extent. Throughout this subsection, unless otherwise stated,
we assume that M is compact.
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Definition 3.71. Define CD := γ ker(Dmax), the Hardy space of solutions of D.

Note that it is not immediate the space CD is closed in Ȟ(D), even though ker(Dmax)
is closed in both L2(M ′, E) and dom(Dmax). We can only invoke Proposition 3.22
to conclude a space is closed when it contains dom(Dmin) and it is certainly not true
that dom(Dmin) ⊂ ker(Dmax). In fact, dom(Dmin)∩ker(Dmax) = ker(Dmin) is always
a finite dimensional space.

Theorem 3.72 (Theorem in [43]). There is a projector

PC :
m−1⊕
j=0

H− 1
2
−j(∂M,E) →

m−1⊕
j=0

H− 1
2
−j(∂M,E)

with

CD = PC

m−1⊕
j=0

H− 1
2
−j(∂M,E) .

This projector restricts to a projector on

m−1⊕
j=0

Hs− 1
2
−j(∂M,E)

for all s ≥ 0. Moreover,

Ȟ(D) = (I − PC)

[
m−1⊕
j=0

Hm− 1
2
−j(∂M,E)

]
⊕ PC

[
m−1⊕
j=0

H− 1
2
−j(∂M,E)

]
︸ ︷︷ ︸

=CD

.

Definition 3.73. Such a projector PC is called a Calderón projector.

This theorem says that we can understand Ȟ(D) ‘almost’ with boundary information
alone. We say ‘almost’ because v ∈ CD if and only if there exists u ∈ ker(Dmax).
If we alter the operator D, then that alternation will be reflected in ker(Dmax) and
hence in CD. As it stands, our description of Ȟ(D) still ‘feels’ the interior to a certain
extent.

Let us imagine the way in which we can divorce a description of Ȟ(D) from D.
Functional analytically, what this would mean is that Ȟ(D) should not see what
happens to the operator far away from D, but rather, only in an arbitrarily small
neighbourhood of the boundary. As a first attempt, let us try to rephrase this more
precisely in the language of operator theory. Suppose that D̃ is another operator
which agrees with D on a small neighbourhood of ∂M . By this, we mean that the
coefficients of these two operators are the same in this small neighbourhood. We
would like in this case to obtain that Ȟ(D̃) = Ȟ(D). This is indeed true.
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Proposition 3.74. Let D, D̃ ∈ Diffm(E,F ), both elliptic, and suppose that there
exists an open neighbourhood U of ∂M such that D|U = D̃|U . Then, Ȟ(D) =

Ȟ(D̃).

Proof. We leave this as an exercise. Hint: Use the cutoffs as we discussed in sub-
section 3.11.1.

Let us now embark on a second attempt. Suppose that we fix some sort of operator
on the boundary, determined only from the principal symbol information of D on
the boundary. We would like this operator to determine some canonical operator
Dcan. For instance, if in Rn

+, we have the operator

Du =
n∑
j=1

Aj∂ju+Bu ,

we may want to consider the operator

Dcanu =
n∑
j=1

Aj∂ju .

Typically, such a canonical operator would have a geometric meaning. It might arise
from attaching a cylinder at the boundary, or equivalently, pulling back a simpler
operator on the cylinder via the collar neighbourhood theorem.

In contrast to our first attempt, the operators D and Dcan do not agree near ∂M .
Therefore, it is unclear whether we can asset that Ȟ(Dcan) = Ȟ(D). Were it plausible
to do so, then we would be able to describe the Czech space of a complicated operator
such as D via a simpler ‘model’ operator D0. We do not consider this problem for
the general-order situation, but this will of paramount importance to our analysis
in the first-order case.
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3.11.3 Some types of boundary conditions

Let us recall from Definition 3.24 that we call B is a boundary condition if B ⊂
Ȟ(D) is a closed subspace. By DB, we denote the induced operator with domain
dom(DB) = {u ∈ dom(Dmax) | γu ∈ B}.

Definition 3.75 ((semi)-Elliptically regular). A boundary condition B is
called semi-elliptically regular if B ⊂

⊕m−1
j=0 Hm− 1

2
−j(∂M,E). If both B and B†

are semi-elliptically regular, we say that B is elliptically regular.

Example 3.76. 1. B = (I − PC)
[⊕m−1

j=0 Hm− 1
2
−j(∂M,E)

]
is certainly a closed

subspace of Ȟ(D). Therefore, it is semi-elliptically regular. Note that, dom(DB) ⊂
Hm(∂M,E). In actual fact, B is elliptically regular, but it is beyond the scope
of the methods we have developed so far to demonstrate this.

2. CD := PC

[⊕m−1
j=0 H− 1

2
−j(∂M,E)

]
certainly closed in Ȟ(D). However, dom(DCD) 6⊂

Hm(∂M,E). Therefore, it is not semi-elliptically regular or even elliptically
regular. In fact dim(CD) = ∞ ⇒ dimker(Dmax) = ∞.

Remark 3.77. Example 2. highlights an extremely important fact. It shows that,
unlike in the closed manifold situation, elliptic operators may fail to satisfy elliptic
regularity if the boundary condition is not chosen carefully. The regularity of the
domain of the induced operator, which is of paramount importance in applications
to both global analysis and PDE, require both ellipticity of the operator and a
certain kind of ‘ellipticity’ of the boundary condition. This is what Definition 3.75
captures.

Definition 3.78. A boundary condition B is called Fredholm if DB is a Fredholm
operator. That is, ran(DB) is closed and kerDB as well as

cokerDB := L2(M,F )⧸ran(DB)

are both finite dimensional.

Proposition 3.79. Every elliptically regular B is Fredholm.

Remark 3.80. Again, unlike the closed case, the converse is not true. For in-
stance, let F ⊂ CD be a finite dimensional subspace such that

F ⊂ ⊕m−1
j=0 H

− 1
2
−j(∂M,E) \

m−1⊕
j=0

Hm− 1
2
−j(∂M,E) .

We have already seen that kerPC is elliptic, and therefore Fredholm. Now, con-
sider B = kerPC ⊕ F . Since F is finite dimensional, it is readily verified that
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B is a boundary condition. B is just a finite dimensional alteration of kerPC,
and therefore, the resulting operator DB must be Fredholm. However, it is clear
from construction that B is not semi-elliptically regular, and hence, it cannot be
elliptically regular.

A very important result for boundary value problems, mirroring the higher elliptic
regularity on closed manifolds, is the following regularity theorem. It asserts when
we can obtain Sobolev regularity up to the boundary.

Theorem 3.81 (Higher boundary regularity). We have that

dom(Dmax) ∩ Hs+m(M,E)

=

{
u ∈ dom(Dmax)

∣∣∣∣∣ Dmaxu ∈ Hs(M,E) and PCγu ∈
m−1⊕
j=0

Hs+m− 1
2
−j(∂M,E)

}
.

Example 3.82. Let Ω ⊂ Rn be a smooth bounded domain, ~n the inner normal
along ∂M , and ∆ = −

∑
i ∂i the usual Rn Laplacian. Recall the classical adjoint

formula for u, v ∈ C∞(Ω):∫
Ω

∆uv −
∫
Ω

u∆v =

∫
∂Ω

∂n⃗uv −
∫
∂Ω

u∂n⃗v . (3.9)

1. The Dirichlet problem is defined as the Laplacian with domain

dom(∆D) :=
{
u ∈ dom(∆max)

∣∣∣ u|∂Ω = 0
}

.

On the boundary, inside the Ȟ(∆) space, this manifests as

B = γ dom(∆D) =
{(

0, (∂n⃗u)|∂Ω
) ∣∣∣ u ∈ dom(∆max)

}
⊂ H− 1

2 (∂Ω)⊕H− 3
2 (∂Ω) .

a) Claim: ∆D is self-adjoint.

For v ∈ dom(∆∗
D) have ∫

Ω

∆Duv =

∫
Ω

u∆∗
Dv .

From (3.9), we must have ∫
∂Ω

(∂n⃗u)v = 0 .

We cannot have that all ∂n⃗u = 0, and by considering appropriate u such
that ∂n⃗u 6=, we obtain v|∂Ω = 0. That is, we have v ∈ dom(∆max) and
v|∂Ω = 0 so therefore, v ∈ dom(∆D).
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b) Claim: dom(∆D) = dom(∆max) ∩ H1
0(Ω).

For u ∈ dom(∆max),∫
Ω

∆Duu =

∫
∇u · ∇u = ‖∇u‖2

and s u ∈ H1. Moreover, since u ∈ dom(∆max) implies u|∂Ω = 0, we
conclude u ∈ H1

0(Ω).

c) Claim: dom(∆D) = H2 ∩ H1
0(Ω). Indeed,

u ∈ dom(∆D) ⇒ u ∈ dom(∆max), ∆Du ∈ L2(Ω), (∂n⃗u)|∂Ω ∈ H
1
2 (∂Ω)

⇒ BD elliptically regular
⇒ u ∈ H2(Ω) .

Therefore, u ∈ H2(Ω).

2. The Neumann problem is given by specifying the following domain:

dom(∆N) :=
{
u ∈ dom(∆max)

∣∣∣ (∂n⃗u)|∂Ω = 0
}

.

Similar conclusions can be obtained for the Neumann Laplacian by a similar exam-
ination as for the Dirichlet case.

Remark 3.83. The Dirichlet and Neumann problems can be obtained in an al-
ternative way, which makes it possible for greater generalisation and also for the
study of fractional Sobolev scales on manifolds with boundary, without having
access to any trace theorems. For that, we have to become familiar with a gadget
called an energy.

On a Hilbert space, let E : dom(E)×dom(E) → C be a symmetric form, dom(E) ⊂
L2(M,E) is dense, and (dom(E), ‖·‖E) with ‖u‖2E := ‖u‖2L2 +

√
E [u, u] is a Banach

space. Then there is a unique non-negative self-adjoint operator ∆E , dom(∆E) ⊂
dom(E), dom

(√
∆E
)
= dom(E) satisfying

E [u, v] =
〈√

∆Eu,
√
∆Ev

〉
L2(M,E)

.

See representation theorems 1 add 2 in [33].

Returning back to the Dirichlet problem, we consider the energy

ED[u, v] =
∫

∇u · ∇u︸ ︷︷ ︸
Euclidean metric

dL with dom(ED) = H1
0(Ω) .

More generally, on a manifold with boundary, given a Riemannian metric g, we
can consider

ED,g[u, v] =
∫
g(du, dv) dµg
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for u, v ∈ H1
0(M, g). That is precisely the energy with domain H1

0(M, g). The
operator obtained from this energy is precisely ∆D, the Dirichlet Laplacian.

The Neumann problem then corresponds to the same energy but with domain
H1(M, g)

EN,g[u, v] =
∫
g(du, dv) dµg for u, v ∈ H1(M, g).

There are numerous advantages with the energy approach. Firstly, there is no re-
quirement to know about the boundary trace. Therefore, given any open manifold,
without knowing anything about the boundary, one can extract both a Dirichlet
and Neumann Laplacian. Secondly, there’s no requirement that the metrics be
smooth. In this situation, one will not expect the domain of the operators to be
contained in H2(M, g), and this could even be an operator theoretic measure of
non-smoothness.

The energy methods also have a deep shared history with divergence form op-
erators. Geometrically, such operators can be seen as changing to an auxiliary
smooth background and where the original non-smoothness of the coefficients are
now contained in the coefficients of an operator, in divergence form. In that case,
the Laplacian might look like ∆D = −a divA∇, where a and A contain the original
metric. These operators can make sense down to the level of measurable coefficient
a and A, and therefore, the smoothness requirements on the Riemannian metric g
can be reduced significantly. See [8] where a useful class of measurable coefficient
metrics called ‘rough metrics’ are defined and examined in more detail.





4 First-order elliptic operators

From this chapter onward, we will be largely concerned with first-order elliptic dif-
ferential operators. General-order examples may appear to highlight salient features
of general theory we discuss along the way. From here on, we assume the following:

[FO1] (M,µ) is a measured manifold.

[FO2] ∂M is compact.

[FO3] T is an inward pointing vectorfield.

[FO4]
(
E, hE

)
,
(
F, hF

)
→M are Hermitian vector bundles.

[FO5] D ∈ Diff1(E,F ) is elliptic.

4.1 Adapted boundary operators

In subsection 3.11.2, we described the Czech space in terms of a Calderón projector.
Towards the end, we discussed describing the Czech space with respect to a Calderón
projector of another operator, the so-called ‘model’ operator. The first kind of
description was when two operators agree on a neighbourhood of the boundary, and
there, in Proposition 3.74, we showed this was always possible.

However, the more challenging goal was to describe Ȟ(D) in terms of Ȟ(D0), where
D0 is built out of a part of D, but not equal to D, on a neighbourhood of the
boundary. The aim of this section is to consider this goal. This is accomplished
by first describing an important class of operators on the boundary called adapted
boundary operators. These adapted boundary operators are determined from the
principal symbol of D, but it is truly an object that lives on ∂M . Every adapted
boundary operator then induces a ‘model’ operator D0. Later, we will see that this
leads to a true description of Ȟ(D) from boundary information alone.

Below, we demonstrate a geometric reduction lemma that upgrades the topological
collar neighbourhood theorem, Theorem 3.70, to a geometric one. For this, we
require the existence of an interior point covectorfield to interact with the vectorfield
T .

Lemma 4.1. There exists a unique covector field τ ∈ C∞(∂M, T ∗M) s.t.

T∂M ⊂ ker(τ) and τ [T ] = 1 .
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Proof. This is a routine pointwise calculation and is left as an exercise.

The following lemma is extracted from [10], where it can be found as Lemma 2.4.

Lemma 4.2 (Geometric reduction). There is an open neighbourhood U ⊂ M
with ∂U ⊂ M , an R > 0 and a Ψ := (t, ψ) : U → ZR := [0, R) × ∂M s.t. the
following hold.

I) ∂M = t−1(0).

II) ψ|∂M = id∂M .

III) dΨ(T ) = ∂t along ∂M .

IV) τ = dt along ∂M .

V) Ψ∗(µ) = |dt| ⊗ ν, where ν is the induced measure on the boundary.

Proof. a) First, extend T to T̃ 6= 0 in some open neighbourhood U0 of ∂M .

b) Then, solve for f : U1 ⊂ U0 → R, ∂M ⊂ U1, where U1 is a possibly smaller open
set, satisfying the differential equation:{

0 = divµ

(
fT̃
)
= df

(
T̃
)
+ f divµ T̃ ,

f |∂M = 1 .

This is, in fact, an ODE along integral curves of T̃ and therefore, we obtain a unique
smooth f . Here, for the divergence divµ with respect to the density µ, we have used
the fact that there is a Riemannian g induced by µ and T such that d volg = dµ.
Therefore, we have that divµ = divg, where the latter object is obtained via the
associated Levi-Civita connection.

c) Let Ψ̃ be the flow associated to fT̃ . By the compactness of ∂M there is a R > 0
and U2 open, again possibly smaller than U1, with ∂M ⊂ U2 such that ZR → U2

given by (t, x) 7→ Ψ̃t(x) is a diffeomorphism.

d) Set Ψ := Ψ̃−1 and U := U2. By construction, we obtain I) through to IV). Here,
f was used to ensure that divµ

(
fT̃
)
= 0, which yields V).
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Let us now examine D in U ∼= [0, R) × ∂M = ZR. For that, first note that on M ,
by the ellipticity of D, there exists a unique connection ∇D such that, given a local
frame {ei} for TM near x we have that

Du(x) =
n∑
i=1

σD
(
x, ei

)
∇D
ei
u(x) ,

where ei is the dual frame. Now, let us focus on x ∈ U and en = ∂t. Then,

Du(x) =
n∑
i=1

σD
(
x, ei

)
∇D
ei
u(x)

=
n−1∑
i=1

σD
(
x, ei

)
∇D
ei
u(x) + σD(x, dt)∇D

∂tu(x)

= σD(x, dt)

(
n−1∑
i=1

σD(x, dt)
−1
σD
(
x, ei

)
∇D
ei
u(x) +∇D

∂tu(x)

)

= σD(x, dt)

(
∂tu(x) +

n−1∑
i=1

σD(x, dt)
−1︸ ︷︷ ︸

Fx→Ex

σD
(
x, ei

)︸ ︷︷ ︸
Ex→Fx︸ ︷︷ ︸

Ex→Ex

∇D
ei
u(x)

︸ ︷︷ ︸
∈Diff1

(
E|

∂M

)
elliptic

+
(
∇D
∂t − ∂t

)︸ ︷︷ ︸
∈Diff0

u(x)

)
.

(4.1)

From this, it is clear that the interesting operator of order one on the boundary is
precisely

σD(x, dt)
−1
σD
(
x, ei

)
∇D
ei
u(x) .

On making the required identifications, it is easy to see that this is an operator
acting on the bundle E|{t}×∂M → {t} × ∂M .

Definition 4.3. An operator A ∈ Diff1

(
E|∂M

)
is called an adapted boundary

operator to D if its principal symbol satisfies

σA(x, ξ) = σD(x, τ)
−1 ◦ σD(x, ξ)

for all ξ ∈ T ∗
x∂M .
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Remark 4.4. Clearly, an adapted operator on the boundary A is elliptic.

Remark 4.5. Since ∂M has no boundary and A is elliptic, we have that Ā =
Amax = Amin. Consequently, with a slight abuse of notation, we will denote by
A the operator A ∈ Diff1(E|∂M) as well as Ā : H1(∂M,E) ⊂ L2(∂M,E) →
L2(∂M,E).

Given that we have highlighted this class of operators, the goal is to be able to
control Ȟ(D) in terms of A, an operator purely on the boundary. The point here
to note is that the relationship between A and D is only that A is built out of
the principal symbol of D restricted to the boundary. Therefore, A is really an
operator which only sees the boundary and nothing else. However, as we expressed
in subsection 3.11.2, it is not immediate how we can control the operator D knowing
an operator A only defined on the boundary. For that, we have the following lemma
which gives a hint of how to perform an operator theoretic reduction. This lemma
appears as Lemma 4.1 in [10], albeit there, it is assumed that A is symmetric.

Lemma 4.6 (Operator reduction). Let A, Ã be adapted boundary operators to
D and D† respectively. Then there are differential operators Rt ∈ Diff1

(
E|∂M

)
and R̃t ∈ Diff1

(
F |∂M

)
(i.e. at most order 1) on ZR varying smoothly in t ∈ [0, R)

s.t. inside U ∼= ZR,

D = σt(∂t + A+Rt) and D† = −σ∗
t

(
∂t + Ã+ R̃t

)
,

where σt := σD(x, dt). Moreover, given R′ < R, there exists a constant C ′ < ∞
s.t.

‖Rtu‖L2(∂M) ≤ C ′
(
t‖Au‖L2(∂M) + ‖u‖L2(∂M)

)
,∥∥∥R̃tu

∥∥∥
L2(∂M)

≤ C ′
(
t
∥∥∥Ãu∥∥∥

L2(∂M)
+ ‖u‖L2(∂M)

)
in ZR′.

Proof. We only prove this statement for the operator D, given a boundary adapted
operator A, since the proof for D† given Ã is obtained by the exact same argument.

As we have already seen in (4.1),

D = σt(∂t +Xt) ,

where σt := σD(x, dt) and Xt ∈ Diff1(E|∂M) elliptic. Restricting to the boundary,
i.e. t = 0, it is clear that σX0(x, ξ) = σA(x, ξ).

Define:
Rt := Xt − A .
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Note that R0 is of order 0 since the principal symbol of X0 and A are equal. There-
fore, we have that Rt ∈ Diff1

(
E|∂M

)
and locally, inside a coordinate chart, we can

write

Rtu =
∑
i

Ri
t∂iu+ Stu ,

(Rt −R0)u =
∑
i

(
Ri
t −Ri

0

)
∂iu+ (St − S0)u .

Since t 7→ Ri
t and t 7→ St are smooth, which means precisely that their coefficients

are smooth, in particular implies that these coefficients are Lipschitz. Given R′ < R,
setting R′′ := R′ + R−R′

2
, on ZR′′ , we obtain the estimates∣∣(Ri

t −Ri
0

)
v
∣∣ ≲ t|v| and |(St − S0)v| ≲ t|v| .

Here, the implicit Lipschitz constant obviously depends on R′′. Therefore, for t ∈
[0, R′], we have

|(Rt −R0)u|2 ≲ t2

(
n∑
i=1

|∂iu|2 + |u|2
)

.

Instituting a finite partition of unity using the compactness of ∂M , patching, and
integrating the resulting expression, we obtain

‖(Rt −R0)u‖L2(∂M) ≲ t‖u‖H1(∂M) .

Therefore,

‖Rtu‖L2(∂M) ≲ t‖u‖H1(∂M) + ‖R0u‖L2(∂M)

≲ t‖u‖H1(∂M) + ‖u‖L2(∂M)

≲ t
(
‖Au‖L2(∂M) + ‖u‖L2(∂M)

)
+ ‖u‖L2(∂M)

≲ t‖Au‖L2(∂M) + ‖u‖L2(∂M) ,

where in the first inequality we used the reverse triangle inequality, in the second
the fact that R0 is a bounded operator, and the penultimate inequality we used the
ellipticity of A.

Definition 4.7 (Model operator on ZR given adapted A). Given an
adapted boundary operator A to D, the operator

D0 := σ0(∂t + A) ,

where σ0 = σD(x, τ) : Ex → Fx, is called the model operator.

Remark 4.8. Note that D0 induces an induces an adapted boundary operator

Ã := −
(
σ−1
0

)∗
A∗σ∗

0

for D†. This is obtained by simply computing the formal adjoint of D0 in ZR:

D†
0 = (−∂t + A∗)σ∗

0 = −σ∗
0

(
∂t −

(
σ−1
0

)∗
A∗σ∗

0

)
.
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Let us again recall our discussion earlier, as well as in section 3.11.2, where we
alluded to the fact that we wish to control D in terms of boundary information
alone. So far, we have highlighted a class of operators A, the adapted boundary
operators to D, as candidates which will allow us to accomplish this goal. The
model operator simply ‘pushes’ A to the interior and it can be thought of as an
interior realisation of A. What we mean precisely by this is that we wish to obtain
Ȟ(D0) = Ȟ(D), and then have Ȟ(D0) being described by the operator A.

In order to accomplish such a goal, an important necessary condition is to know
that the maximal domain of D0 and D are equal on a neighbourhood of ∂M . Given
the geometric reduction as well as operator theoretic reduction in Lemmas 4.2 and
4.6, we have candidate neighbourhoods where we can anticipate this equality to
hold. In the earlier reduction which we presented, i.e., in Proposition 3.74, this was
immediate since D̃ and D were equal on a neighbourhood of ∂M . At this stage, we
will not embark on a rigorous proof of the reduction of D to D0. However, consider
the following calculation:

D −D0 = σt(∂t + A+Rt)− σ0(∂t + A)

= (σt − σ0)σ
−1
0 D0 + σtRt .

(4.2)

For an R′ < R, it is clear that the term (σt − σ0) is uniformly bounded inside ZR′

due to smoothness of σt and compactness of ∂M . Moreover, by Lemma 4.6, the
remainder term σtRt is controlled by A.

Another noteworthy result is the following.

Proposition 4.9. For all u ∈ C∞
c (M,E) and all v ∈ C∞

c (M,F ) we have

〈Du, v〉L2(M,F ) −
〈
u,D†v

〉
L2(M,E)

=
〈
σ0u|∂M , v|∂M

〉
L2(∂M,F )

.

We see here that the key player that appears in the boundary term is in fact σ0.

Therefore, combining equation (4.2) along with Proposition 4.9, we have a strong
indication of the plausibility to reduce questions regardingD toD0. At this stage, we
will leave it as impressionistic and suggestive, and return to a rigorous analysis later.
However, we see from this that understanding the model operator on the cylinder
is of paramount importance in order for this reduction to work. In particular, this
means having to study the operator theory of A in greater detail.

Let us make one further remark to conclude the section. Eventually, we wish to
extend Proposition 4.9 to Dmax and D†

max. But we are constrained by their values
on C∞

c (M,E) ⊂ dom(Dmax) and C∞
c (M,F ) ⊂ dom(Dmin). The pairing at the

boundary, i.e. the term on the right is〈
σ0u|∂M , v|∂M

〉
L2(∂M,F )

.

This is the L2-inner product on the boundary. Therefore, the extension to the
maximal domains of the respective operators must respect this constraint. This is



4.2 Spectral Theory and H∞-functional calculus 83

precisely what forces us away from the Hilbert space inner product of spaces where
these boundary conditions lie and instead prompts us to consider perfect pairings
between different Hilbert spaces.

4.2 Spectral Theory and H∞-functional calculus

As aforementioned, we wish to understand adapted boundary operators in a more
precise manner. That requires us to introduce one of the most significant aspects
of operator theory - the spectrum of an operator. We give an account of this in full
generality.

Let T : B → B be an operator on a Banach space.

Definition 4.10 (Resolvent and resolvent set). For ζ ∈ C we say ζ ∈ res(T )
if (ζ − T ) is invertible. That is, (ζ − T ) has dense range and there is a c ∈ (0,∞)
s.t. ‖(ζ − T )u‖ ≥ c‖u‖ for all u ∈ dom(T ).

The set res(T ) is called the resolvent set and for ζ ∈ res(T ), the operator
(ζ − T )−1 ∈ B(B) is a resolvent.

Remark 4.11. Note that when ζ ∈ res(T ), from the estimate in the definition,
we automatically have that (ζ − T ) is injective. Therefore, we have (ζ − T )−1 :
ran(ζ − T ) → B, with the estimate∥∥(ζ − T )−1u

∥∥ ≤ c‖u‖ ,

for all u ∈ ran(ζ − T ). However, since ran(ζ − T ) is dense, the operator (ζ − T )−1

extends uniquely to a bounded operator on all of B. It is for this reason we can
consider the resolvent (ζ − T )−1 ∈ B(B).

Proposition 4.12 (First resolvent equation). For ζ, ξ ∈ res(T ), we have the
first resolvent equation:

(ζ − T )−1 − (ξ − T )−1 = (ζ − ξ)(ζ − T )−1(ξ − T )−1 .

In particular, resolvents commute.

Definition 4.13 (Spectrum). The spectrum of T is

spec(T ) := C \ res(T ) .

We say:

• λ ∈ specp(T ) if (λ− T ) is not injective,
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• λ ∈ specc(T ) if (λ− T ) is injective with dense-range but (λ− T )−1 is un-
bounded,

• λ ∈ specr(T ) if there is a c ∈ (0,∞) s.t. ‖(λ− T )u‖ ≥ c‖u‖ but (λ− T )
does not have dense range.

The set specp(T ) is called the point spectrum, specc(T ) the continuous spectrum
and specr(T ) the residue spectrum.

As the following proposition highlights, only closed operators have the chance to
enjoy a non-trivial spectral theory.

Proposition 4.14. If T : B → B is not closed, then spec(T ) = C.

Proof. We prove the contrapositive. Suppose that spec(T ) ⫋ C. Therefore res(T ) 6=
∅ so fix ζ ∈ res(T ). Now, we have that by definition, (ζ − T )−1 ∈ B(B). By
Exercise 2.28, we then have that ((ζ − T )−1)−1 = (ζ − T ) is closed. Since v 7→ ζv
is a bounded operator, it follows that T = (ζ − T ) + ζ is also closed. Hence, T is a
closed operator.

As a consequence of this proposition, throughout, we will only consider closed op-
erators for spectral theoretic purposes.

Proposition 4.15. If T ∈ C (B) the following hold.

I) spec(T ) is closed.

II) res(T ) 6= ∅ ⇒ ζ 7→ (ζ − T )−1 is holomorphic.

III) If U : B → B′ is an isomorphism of Banach spaces, then

res
(
U−1TU

)
= res(T ) and spec

(
U−1TU

)
= spec(T ) .

Moreover, whenever ζ ∈ res(T ), we have (ζ − U−1TU)
−1

= U(ζ − T )−1U−1.

In later parts, it is essential for us to also know how to relate the spectrum of
an adjoint operator to the spectrum of the original operator. For this, let us first
highlight the following important fact about adjoints of reflexive pairings.

Proposition 4.16. Let 〈B1,B2〉 be reflexive and T : B2 → B densely-defined and
closable. Then:

I) The adjoint T ∗ : B1 → B1 is densely-defined and closed.

II) ker(T ∗) = ran(T )⊥,⟨B1,B2⟩.
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III) If B1 = B2 = H is a Hilbert space, then

H = ker(T ∗)⊕ ran(T ) = ker
(
T
)
⊕ ran(T ∗) .

Proof. a) Ad I). The conclusion for the canonical adjoint T ∗,can w.r.t. 〈B∗
2,B2〉 is

obtained by examining inv graph(T ∗,can) = graph(T )⊥. Since we assume 〈B1,B2〉 is
reflexive, we obtain the stated conclusion for T ∗ through Proposition 2.48. We leave
the details as an exercise.

b) Ad II). We first prove ker(T ∗) ⊂ ran(T )⊥,⟨B1,B2⟩. For that, fix u ∈ ker(T ∗). Then
∀u ∈ dom(T ∗), w ∈ dom(T ) have

0 = 〈T ∗u,w〉 = 〈u, Tw〉 .

That is, u ∈ ran(T )⊥,⟨B1,B2⟩.

Next, we show that ker(T ∗) ⊃ ran(T )⊥. If u ∈ dom(T )⊥ we have 〈u, Tw〉 = 0 for
all w ∈ dom(T ). Therefore,

0 = 〈u, Tw〉 = 〈T ∗u,w〉 = 0

for all w ∈ dom(T ). Since dom(T ) is dense in B2 and we have a perfect pairing, we
have that T ∗u = 0. That is, u ∈ ker(T ∗).

c) Ad III). This follows from II), and it is left as an exercise.

As always in spectral theory, we study the spectrum through understanding resol-
vents (when they exist). In order to relate the resolvent of the adjoint to the adjoint
of the resolvent, we first note the following commutativity of adjoints and inversion
when the inverse is a bounded operator.

Lemma 4.17. Let 〈B1,B2〉 be reflexive and T ∈ C (B2) densely-defined. Then

T−1 ∈ B(B2) ⇔
(
T−1

)∗ ∈ B(B1)

and (T ∗)−1 = (T−1)
∗.

Proof. This is a routine calculation, which we leave as an exercise.

Notation 4.18. For S ⊂ C we write Sconj := {z̄ | z ∈ S} as the complex conju-
gation of the set S.

Proposition 4.19. Let 〈B1,B2〉 reflexive and T ∈ C (B2) densely-defined. Then

spec(T ∗) = spec(T )conj and res(T ∗) = res(T )conj .
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Proof. It suffices to show ζ ∈ res(T ) ⇒ ζ̄ ∈ res(T ∗). By the conjugate linearity of
the inner product in the second slot,〈(

ζ̄ − T ∗)u, v〉 = 〈u, (ζ − T )v〉 ,

which yields (ζ − T )∗ =
(
ζ̄ − T ∗). By the previous Lemma 4.17 we have that

(ζ − T )∗ =
(
ζ̄ − T ∗) is invertible and therefore ζ̄ ∈ res(T ∗).

Example 4.20. 1. Let B ∈ Cn×n be a matrix. Then spec(B) = specp(B).
These are precisely the eigenvalues. However, the corresponding eigenspaces
may not span the whole space, and therefore, generalised eigenspaces need to
be considered. This is best seen through the matrix

B =

(
0 1
1 0

)
.

2. Consider T : H → H self-adjoint. I.e. T is a densely-defined symmetric
operator with T ∗ = T . Note this implies T is automatically closed. Then,

I) spec(T ) ⊂ R, and

II) we have ‘resolvent estimates’:∥∥(ζ − T )−1u
∥∥ ≤ 1

‖Im(ζ)‖
‖u‖ .

Proof. a) Ad I). For any operator, we always have that 〈Tu, u〉 = 〈u, Tu〉.
However, due to self-adjointness of T , we have that 〈Tu, u〉 = 〈u, Tu〉. There-
fore, 〈Tu, u〉 ∈ R.

Now, fix ζ ∈ C \R. Then, we have that 〈(ζ − T )u, u〉 = ζ‖u‖2 − 〈Tu, u〉 from
which we conclude

Im〈(ζ − T )u, u〉 = (Im ζ)‖u‖2 .
Therefore,

‖u‖2 ≤ 1

|Im(ζ)|
Im〈(ζ − T )u, u〉

≤ 1

|Im(ζ)|
|〈(ζ − Tu), u〉|

≤ 1

|Im(ζ)|
‖(ζ − T )u‖‖u‖ .

Hence,
‖u‖ ≤ 1

|Im(ζ)|
‖(ζ − T )u‖ , (4.3)

so in particular, (ζ − T ) is injective.

We only assumed that ζ ∈ C \R, so the same argument yields that (ζ − T ) is
injective. By Proposition 4.16 II) we have that ran(ζ − T )⊥ = ker((ζ − T )∗)
and by Proposition 4.16 III),

H = ker((ζ − T )∗)⊕ ran(ζ − T ) = ran(ζ − T ) .
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Here, the second equality follows from the fact that

(ζ − T )∗ = (ζ − T ∗) = (ζ − T )

using the self-adjointness of T and the injectivity of (ζ − T ) which we alluded
to earlier. This shows that (ζ − T ) has dense range and on combining this
with the estimate (4.3) implies that ζ ∈ res(T ).

b) Ad II). This is immediate from the estimate (4.3) since we have already
established that C \ R ⊂ res(T ).

3. If T is non-negative self-adjoint, i.e. 〈Tu, u〉 ≥ 0, then spec(T ) ⊂ [0,∞).

For example, the Euclidean Laplacian ∆ = −
∑n

i=1 ∂
2
i on L2(Rn) is a non-

negative self-adjoint operator and there, we have spec(∆) = [0,∞).

4.3 Pure point spectrum

We have seen that the spectrum of an operator can be classified into three distinct
parts. Later on, it will be important for us to know that the operators we consider
have pure point spectrum. However, we have seen that even classical examples, like
the Euclidean Laplacian, fails this criterion. To understand when an operator has
point spectrum, we need to understand a certain subclass of operators.

Definition 4.21. An operator T ∈ B(B) is said to be compact if for all BR(0) =
{x ∈ B | ‖x‖ < R} ⊂ B, we have T (BR(0)) is a precompact set (i.e. T (BR(0)) is
compact).

An extremely important fact regarding compact operators is the following. It allows
one to conclude when a bounded operator is compact through factoring it via a
compact operator.

Proposition 4.22. Let S, T ∈ B(B) and T compact. Then TS and ST are
compact.

The following then gives criteria for pure point spectrum for compact operators and
for closed operators via their resolvents.

Proposition 4.23. I) If T ∈ B(B) is compact, then spec(T ) = specp(T ) con-
sists of isolated points with 0 being the only point of accumulation. The
generalised eigenspaces are finite dimensional.

II) If T ∈ C (B), ζ ∈ res(T ) and (ζ − T )−1 is compact, then spec(T ) =
{λi | i ∈ N} is an isolated set of points, the generalised eigenspaces are finite
dimensional and the only accumulation point is at ∞.
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Moreover ζ ′ ∈ res(T ) ⇒ (ζ ′ − T )−1 compact.

The proofs of these propositions, as well as a wider discussion surrounding compact
operators, can be found in Chapter III, Sections 4, 7 and 8 in [33]. These proposi-
tions have an important consequence for elliptic differential operators on compact
manifolds with boundary, as captured in the following.

Corollary 4.24. Let D ∈ Diffm(E) be elliptic, E →M ′, M ′ compact with ∂M =
∅. If res

(
D̄
)
6= ∅, then spec

(
D̄
)

is discrete and the generalised eigenspaces are
finite dimensional and smooth (i.e. they consist of smooth sections).

Proof. Recall that by Theorem 3.38, we have that D̄ = Dmax = Dmin since M ′ is
compact and ∂M ′ = ∅. The same theorem guarantees elliptic regularity and we
have dom

(
D̄
)
= Hm(M ′, E). Now,

Hm(M ′, E) ⊂ H1(M ′, E)
compact
↪→ L2(M ′, E) .

Since M ′ is compact we have that ζ ∈ res
(
D̄
)

and we can factor the map (ζ−D̄)−1 :
L2(M ′, E) → L2(M ′, E) as(

ζ − D̄
)−1

: L2(M ′, E) → Hm(M ′, E)
compact
↪→ L2(M ′, E) .

By Proposition 4.22, we have that
(
ζ − D̄

)−1 is a compact operator.

Proposition 4.23 guarantees discrete spectrum with finite dimensional generalised
eigenspaces for D̄. Moreover, if ϕ is a generalised eigenvector of D̄, then ϕ ∈⋂
ℓ∈N H

ℓ(M ′, E) = C∞(M ′, E).

4.4 Banach valued integrals

In what is to follow, we will need to integrate Banach valued functions. Measure
theory in the Banach-valued setting has been widely studied and there is a broad
variety of deep and sophisticated topics. Much of this surrounds questions of mea-
surability for Banach-valued maps. For our purposes, in the worst case scenario, we
shall only need to integrate piecewise continuous functions. Therefore, we require
the simplest kind of integration in the Banach-valued setting - the generalisation of
the Riemann integral.

Definition 4.25 (Banach-valued definite Riemann integral). For a contin-
uous function f : [a, b] → B, define the definite Riemann integral∫ b

a

f(t) dt := lim
n→∞

n−1∑
j=0

b− a

n
f(a+ j(fracb− an)) .
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Remark 4.26. The limit certainly exists if f is continuous since the sequence

sn :=
n−1∑
j=0

b− a

n
f

(
a+ j

(
b− a

n

))
is Cauchy in B.

It is also useful to obtain an indefinite Banach valued integral.

Definition 4.27 (Banach-valued indefinite Riemann integral). If
f : (a, b] → B is continuous, define∫ b

a

f(t) dt := lim
a′→a

∫ b

a′
f(t) dt

whenever the limit exists.

Proposition 4.28. For a continuous function f : (a, b] → B, we have∫ b

a

‖f(t)‖ dt <∞ ⇒
∥∥∥∥∫ b

a

f(t) dt

∥∥∥∥ ≤
∫ b

a

‖f(t)‖ dt .

Note that each of these definitions are easily extended to the case where continuity
is replaced with piecewise continuity. With that in mind, we also consider a contour
integral.

Definition 4.29 (Banach-valued contour integral). If γ : [a, b] → Ω ⊂ C is
piecewise continuously differentiable and f : Ω → B continuous, then define∮

γ

f(ζ) dζ :=

∫ b

a

(f ◦ γ)(t)γ̇(t) dt .

Here we used an integral symbol which suggests integration over a closed curve.
That’s because we want to mainly consider curves ‘enveloping’ things in the following
sense.

Definition 4.30. Let Λ ⊂ Ω ⊂ C. We say that γ : [a, b] → Ω envelops Λ in Ω, if
γ is a continuous and piecewise continuously differentiable closed curve in Ω \ Λ
that has winding number 1 w.r.t. each point z ∈ Λ, i.e.

1

2πı

∮
γ

1

ζ − z
dζ = 1 .
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If Λ = {ω} we also say that γ envelops ω in Ω.

Remark 4.31. 1. Visually, a curve having winding number 1 w.r.t. a point
means that it runs around this point in a counter-clockwise manner exactly
once.

2. With this notion of integral, many results of C-valued holomorphic functions
hold for B-valued holomorphic functions. I.e., f : Ω → B holomorphic, then

f(ω) =
1

2πı

∮
γ

f(z)

z − ω
dz

for any curve γ enveloping ω.

The Cauchy integral formula in the Banach space setting will be at the heart of our
considerations in this section. We will use this to define functions of operators. But
first, let us motivate this by considering the classical situation when B = C.

Typically, in the Cauchy integral formula, a holomorphic function is fixed and we
write the expression to recover values of that function via the integrand. Let us
now turn this around. Fix a point ω, an open set Ω with ω ∈ Ω and consider
holomorphic functions f : Ω → C. Then, the Cauchy integral formula allows us to
recover f(ω) through a contour integration. Again, let us emphasise, ω is fixed and
we are considering different holomorphic functions f : Ω → C.

It is natural to consider fixing such a point ω, as it can be related the the spectrum
of an operator. For ω ∈ C fixed, consider the multiplication operator

Mω : C → C, z 7→ ωz .

Then
λ ∈ spec(Mω) ⇔ ∃z 6= 0: λz =Mωz = ωz ⇔ ω = λ ,

so spec(Mω) = {ω}.

As before, let Ω be an open neighbourhood of {ω} = spec(Mω) and f : Ω → C a
holomorphic function. Now, suppose that γ envelops spec(Mω) inside Ω. By the
Cauchy integral formula,

f(ω) =
1

2πı

∮
γ

f(ζ)

ζ − ω
dζ =

1

2πı

∮
γ

f(ζ)(ζ − ω)−1 dζ .

Let us now multiply each side by z ∈ C:

f(ω)z =
1

2πı

∮
γ

f(ζ)(ζ − ω)−1z dζ .

Now, let us understand (ζ − ω)−1. Fix z ∈ C and note that

z = (ζ − ω)−1(ζ − ω)z = (ζ − ω)−1(ζ −Mω)z , and
z = (ζ − ω)(ζ − ω)−1z = (ζ −Mω)(ζ − ω)−1z .



4.4 Banach valued integrals 91

That is, (ζ −ω)−1 = (ζ −Mω)
−1 is a resolvent of Mω. Therefore, we can rewrite the

expression above in terms of this resolvent to obtain

f(ω)z =
1

2πı

∮
γ

f(ζ)(ζ −Mω)
−1z dζ ,

which justifies the definition

f(Mω)z :=
1

2πı

∮
γ

f(ζ)(ζ −Mω)
−1z dζ . (4.4)

It is easy to see that if we choose f = id, we obtain f(Mω) = Mω and if we choose
f = 1, we obtain f(Mω) = id.

Since (4.4) is expressed in terms terms of the resolvent of Mω, integrated along a
curve that envelops the spectrum of Mω, we have a clear indication of how we can
obtain functions of arbitrary operators. We first consider this for bounded operators
on a Banach space. Since we need the integrand to converge, we need to understand
the spectrum of such an operator. The following important proposition furnishes us
with that information.

Proposition 4.32. Let T ∈ B(B). Then spec(T ) is compact.

Proof. This is a direct consequence of Runge’s theorem.

With this, we can define functions of bounded operators for a sufficiently large class
of functions.

Definition 4.33 (Riesz-Dunford functional calculus for bounded operators).
Let Ω ⊂ C be an open set and f : Ω → C holomorphic. Let γ be a curve enveloping
spec(T ) inside Ω. Define

f(T )u :=
1

2πi

∮
γ

f(ζ)(ζ − T )−1u dζ .
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Proposition 4.34. The operator f(T ) ∈ B(B). Moreover, we have that

f = id ⇒ f(T ) = T ,
f = 1 ⇒ f(T ) = id ,

(αf1 + βf2)(T ) = αf1(T ) + βf2(T ) ,
(f1f2)(T ) = f1(T )f2(T ) ,

(f1 ◦ f2)(T ) = f1(f2(T )) .

Proof. By definition,

‖f(T )u‖ ≤ len(γ)

(
sup

ζ∈ran(γ)
|f(ζ)|

)(
sup

ζ∈ran(γ)

∥∥(ζ − T )−1
∥∥)‖u‖ ≲ ‖u‖ ,

since f : Ω → C is holomorphic as is ζ 7→ (ζ − T )−1 : Ω → B. Therefore, f(T ) ∈
B(B). The remaining facts are readily verified, although (f1 ◦ f2)(T ) = f1(f2(T ))
requires a slightly more tedious calculation.

Remark 4.35. These properties mean that f 7→ f(T ) : Hol(Ω) → B(B) is a
homomorphism into a commutative subalgebra of B(B).

Example 4.36. Suppose that we can write spec(T ) = Λ1 t . . . t ΛK as a disjoint
union such that there are mutually disjoint open sets Ωi with Λi ⊂ Ωi. Suppose
further that we obtain curves γi, such that γi envelops Λi in Ωi. Let Ω :=

⋃K
i=1Ωi,

and define

χi(ζ) :=

{
1 if ζ ∈ Ωi ,
0 otherwise .

By the mutual disjointedness of Ωi, the maps χi : Ω → C are holomorphic, χiχj = 0
when i 6= j, and χ2

i = χi. Since the functional calculus is a homomorphism, we have
that χi(T ) is a projector. Therefore,

B =
K⊕
i=1

χi(T )B .

Moreover T commutes with χi(T ), and therefore, T |χi(T )B : χi(T )B → χi(T )B. In
fact, spec(T |χi(T )B) = Λi and

Tu =
K∑
i=1

T |χi(T )Bχi(T )u ,

which can be seen as a decomposition of the underlying space B with respect to T ,
and obtaining T via restricted operators on subspaces of B.

If B = CK , then T is a matrix and spec(T ) = {λ1, . . . , λK}. In this situation,
the space χi(T )CK is precisely the generalised eigenspace of λi and the operator
T |χi(T )CK is precisely the Jordan block corresponding to λi.
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4.5 Functions of closed operators

We were able to define operators f(T ) in the previous section by utilising the fact
that spec(T ) is compact when T is bounded to ensure the defining integral converges.
Our desire is to extend this to the case of closed operators. We first start with
demonstrating that the underlying space can be separated via the spectrum under
certain conditions, even when the operator may be unbounded. This generalises
Example 4.36.

Proposition 4.37. Let T ∈ C (B) and suppose that spec(T ) = Λ1 t Λ2 where Λ1

is enveloped by a curve γ : [a, b] → C. Then

Pu :=
1

2πi

∮
γ

(ζ − T )−1u dζ

defines a projection P ∈ B(B) and B = PB ⊕ (I − P )B. Moreover, T |PB :

PB → PB and T |(I−P )B : (I − P )B → (I − P )B, i.e. the restriction of the

operators respect the subspaces. Also, T |PB ∈ B(PB) and spec
(
T |PB

)
= Λ1,

spec
(
T |(I−P )B

)
= Λ2.

Remark 4.38. Note that this projector can be interpreted as χ(T ), where χ :
Ω → C is constructed by fixing disjoint open neighbourhoods Ωi ⊃ Λi, setting
Ω := Ω1 ∪ Ω2 and defining

χ(ζ) :=

{
1 if z ∈ Ω1 ,
0 if z ∈ Ω2 .

Let us now consider forming functions of closed operators. Using the Euclidean
Laplacian as a guiding example, we saw that the spectrum may be an unbounded
set. However, we also saw in Example 4.20 2. II) that a self-adjoint operator enjoys
certain ‘resolvent bounds’, which dictate the way in which the norm of resolvents
can ‘blow up’ when approaching the spectrum. As we discussed in Subsection 3.8,
functions of self-adjoint operators can be constructed for continuous or even Borel
functions on the real line. In fact, the resolvent bounds are at the analytical heart of
the construction of the the spectral measure which facilities this construction. Let
us consider this functional calculus from our point of view that we have developed
here.

Recall that T self-adjoint implies spec(T ) ⊂ ıR. Given a < b and ε > 0, define curve
γ to be a rectangular region enveloping points in (a, b) with the two sides through
a and b. Let γε be this curve but with a ball of ε removed from γ around a and b.
Define:

P [a,b]
ε u :=

1

2πı

∮
γε

(ζ − T )−1u dζ .
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The resolvent bounds in Example 4.20 2. II) are precisely |Im(ζ)|
∥∥(ζ − T )−1

∥∥ ≤ 1
for all ζ ∈ C \R. By design of the curve γε, it is easy to see that Then ‖Pε‖ ≤ c for
c <∞ independent of ε. Therefore, let

P [a,b]u := lim
ε→0

P [a,b]
ε ,

which is readily verified to be a projector. In fact, P [a,b] = dET |[a,b], where
∫
ET

is the spectral measure associated to a self-adjoint operator which we alluded to in
Section 3.8. With the spectral measure, continuous (and also Borel) functions on
the real line can be integrated to form operators f(T ), as we also saw in Section 3.8.

This illustrates in the case of self-adjoint operators how resolvent estimates give us
a method of access to functions of operators. However, as we will see, the analysis of
adapted boundary operators necessitates that we go beyond the self-adjoint realm.
Nevertheless, the analytical features surrounding the self-adjoint case serve as a
template which will allow us to consider a more general class of operators which will
contain the self-adjoint situation as a special case.

Notation 4.39. For a complex number z ∈ C \ {0} let arg(z) ∈ (−π, π] s.t.
z = |z|ei arg(z).

Definition 4.40 (Open/closed bisectors/sectors). Define the closed and
open bisectors of angle µ < π

2
by:

Sµ := {ζ ∈ C | |arg(ζ)| ≤ µ or |arg(−ζ)| ≤ µ} ∪ {0} ,
S◦
µ := S̊µ .
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The closed and open sectors of angle µ < π are then

Sµ± := {ζ ∈ C | |arg(±ζ)| ≤ µ} ∪ {0} ,
S◦
µ± := S̊µ± .

Remark 4.41. Note that S◦
µ and S◦

µ± are open sets and both exclude the point 0.

Definition 4.42 (Bisectorial/Sectorial operator). Let T ∈ C (B) be a
densely defined closed operator on a Banach space and ω < π

2
. Suppose that

(I) spec(T ) ⊂ Sω, and

(II) ∀µ ∈
(
ω, π

2

)
∃Cµ <∞∀ζ /∈ Sµ :

|ζ|
∥∥(ζ − T )−1

∥∥ ≤ Cµ .

Such an operator is called bisectorial or ω-bisectorial. If spec(T ) ⊂ Sω+, then we
say it is sectorial or ω-sectorial.

Remark 4.43. 1. The estimates in (II) are precisely the resolvent estimates
which generalise the estimates we saw for self-adjoint operators.

2. Sectoriality can also be defined for ω ∈
[
π
2
, π
)
.

Example 4.44. 1. Every self-adjoint operator is 0-bisectorial.

2. Every non-negative self-adjoint operator is 0-sectorial.
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Proposition 4.45. 〈B1,B2〉 reflexive, T ∈ C (B2) be ω-(bi)sectorial. Then T ∗ ∈
C (B1) is also ω-(bi)sectorial.

Definition 4.46. We define two function spaces on the open bisector. The
bounded holomorphic functions are

Hol∞
(
S◦
µ

)
:=
{
f : S◦

µ → C
∣∣ f is holomorphic and bounded

}
,

while the polynomially decreasing holomorphic functions, called psi-class func-
tions, are

Ψ
(
S◦
µ

)
:=
{
ψ ∈ Hol∞

(
S◦
µ

) ∣∣ ∃α > 0, c <∞∀ζ ∈ S◦
µ : |ψ(ζ)| ≤ cmin

{
|ζ|α, |ζ|−α

}}
.

Example 4.47. The functions

ζ 7→ ζ

1 + ζ2
and ζ 7→ ζβe−ζ

for β > 0 are examples of psi-class functions.

Definition 4.48. For ψ ∈ Ψ
(
S0
µ

)
and u ∈ B, define

ψ(T )u :=
1

2πi

∫
γ

ψ(ζ)(ζ − T )−1u dζ ,

where γ is a curve parametrised as

γ =
{
teiv

∣∣∞ > t > 0
}
∪
{
−te−iv

∣∣ 0 < t <∞
}

∪
{
−teiv

∣∣ −∞ > t > 0
}
∪
{
te−iv

∣∣ 0 < t <∞
}

for ν ∈ (ω, µ).
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Remark 4.49. 1. The integral here is made sense of by using an approximat-
ing procedure. More precisely, we truncate the curve at radii ε and ε−1,
and then take the limit as ε → 0. Since this is for each fixed u ∈ B, the
convergence is in the strong operator topology.

2. Using the Cauchy integral theorem, it is easy to show that the definition is
independent of the specific ν ∈ (ω, µ).

3. This is an absolutely convergent integral due to decay of ψ and resolvent
estimates for bisectorial T . So,

‖ψ(T )u‖B ≤ Cψ,T‖u‖B .

The following are important properties that this pre-functional calculus enjoys. We
say ‘pre’ here since neither the function 1, nor the resolvent z 7→ (ζ − z) for ζ ∈
res(T ), is a psi-class function.

Proposition 4.50. I) ψ 7→ ψ(T ) : Ψ
(
S◦
µ

)
→ B(B) is a homomorphism of

vector spaces.

II) If S commutes with (ζ − T )−1 for some ζ ∈ res(T ) (i.e. S(ζ − T )−1 ⊂
(ζ − T )−1S), then S commutes with ψ(T ).

III) spec(ψ(T )) = ψ(spec(T )).

IV) If B is reflexive, then B = ker(T )⊕ ran(T ).

Proof. a) Parts I) through III) are readily verified.

b) Ad IV). Let
B0 :=

{
u ∈ B

∣∣∣ lim
n→∞

(1− ınT )−1 exists
}

and define P : B0 → B0 by

Pu = lim
n→∞

1

ın

(
1

ın
− T

)−1

u = lim
n→∞

(1− ınT )−1u .

It is easily verified that P ∈ B(B0) is a projector. Moreover, a routine calculation
will yield that

PB0 = ker(T ) and (I − P )B0 = ran(T ) .

The reflexivity assumption on B is required in proving B0 = B.



98 4 First-order elliptic operators

4.6 Fractional Powers revisited

In Section 3.8, we demonstrated how the spectral theorem for self-adjoint operators
can be used to form fractional powers of non-negative self-adjoint operators. There,
we took the spectral theorem as a given in this construction. In this section, we will
consider the construction of fractional powers of operators for ω-sectorial operators
when ω < π via psi-functions of such operators.

Definition 4.51. Let T be ω-sectorial for ω ∈ [0, π) and let α > 0. Moreover, let

fα(ζ) :=
ζα

1 + ζ2⌈α⌉
,

and it is clear that fα ∈ Ψ
(
S◦
µ

)
. Define:

dom(Tα) :=
{
u ∈ B : fα(T )u ∈ dom(T 2⌈α⌉)

}
,

Tα :=
(
1 + T 2⌈α⌉)fα(T ) .

Remark 4.52. The exponent 2dαe can be replaced by any integer > α. Note
that in doing so, the function f needs to be also altered. Explicitly, fix some
positive integer N > α. Necessarily, we will have that dαe ≤ N . Letting

fNα (ζ) :=
ζα

1 + ζ2N
,

we have that
Tα = (1 + T 2N)fNα (T ) .

The domain of the operator via this construction is the same as before, since we
required fNα (T )u ∈ dom(T 2N). As N changes, so does fNα as well (1 + T 2N). This
is seen from the following impressionistic calculation, which can be made rigorous
(exercise):

Tα = (1 + T 2⌈α⌉)fα(T )

= (1 + T 2⌈α⌉)(1 + T 2N)(1 + T ⌈2N⌉)−1fα(T )

= (1 + T 2N)(1 + T ⌈2N⌉)−1(1 + T 2⌈α⌉)fα(T )

= (1 + T 2N)fNα (T ) .

For example, letting α := 2 and N = 106, we see that

fNα (ζ) :=
ζ2

1 + ζ106
,

and (
1 + T 106

)
f̃α(T ) =

(
1 + T 106

) T 2

1 + T 106
= T 2 .
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Proposition 4.53. I) Tα is αω-sectorial if α ∈ (0, 1).

II) For α < β we have dom
(
T β
)
⊂ dom(Tα).

III) Tα+β = Tα ◦ T β.

IV) spec(Tα) = spec(T )α.

V) If S ∈ B(B) commutes with a resolvent (ζ − T )−1, then S also commutes
with Tα.

Example 4.54. Let T be non-negative and self-adjoint. We have already seen that
such an operator is 0-sectorial. The fractional power of T constructed here is, as it
is to be expected, consistent with the construction of fractional powers for T using
the spectral theorem as we saw in Section 3.8. One way to see this is to access the
spectral measure via resolvent estimates as we discussed at the start of Section 4.5.

We also highlight the following important proposition, which connects fractional
powers of sectorial operators with interpolation scales.

Proposition 4.55. If T is ω-sectorial, then dom(Tα) = [dom(T ),H]α for 0 <
α < 1.

4.7 Heat equation and semigroups

Semigroups play a central role in the analysis of elliptic operators in the presence
of boundary. This can be seen easily through the model operator D0 = σ0(∂t + A)
from Section 4.1. On interpreting the transversal direction as ‘time’, the study of the
operator ∂t+A can be interpreted as a ‘heat equation’ with respect to the operator A.
In order to consider heat equations and their solutions, we begin with the following
fundamental technical result. Throughout, we assume that T is ω-sectorial.

Theorem 4.56 (McIntosh convergence lemma). Let T be ω-sectorial on the
reflexive Banach space B. Suppose that:

(I) ψn ∈ Ψ
(
S◦
µ+

)
s.t. there is a c <∞ with ‖ψn‖∞ < c uniformly in n, and

(II) ψn → ψ where ψ ∈ Ψ(S◦
µ+) uniformly on compact subsets of S◦

µ+.

Then, for each u ∈ B, ψn(T )u→ ψ(T )u.

Remark 4.57. Note that the convergence here is in the strong operator topology,
not in the operator norm. I.e., given u ∈ B and an ε > 0, the assertion is the
existence of N > 0 such that for n ≥ N ,

‖ψn(T )u− ψ(T )u‖ < ε .
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In contrast, to converge in the uniform operator topology, we would require

‖ψn(T )u− ψ(T )u‖ < ε‖u‖

for ε,N, n independent of u, making this a stronger condition.

The convergence lemma is an enormously useful technical device. It allows us to
immediately obtain properties for functions of operators that are valid for functions.
One such example is the derivative of a t-varying family of functions.

Let us now consider the heat equation with respect to T . That is, given some u0 ∈ B
as the initial condition, we want u ∈ C1((0, 1),B) satisfying

(∂t + T )u = 0 with lim
t→0

u(t) = u0 . (4.5)

To generate solutions, we construct a ‘semigroup’ e−tTu0 =: u(t). This requires us
to construct f(tT ) where f(ζ) := e−tζ . The problem is that, although f(ζ) → 0 as
|ζ| → ∞, we have that f(ζ) → 1 as |ζ| → 1. That is, f /∈ Ψ(S◦

µ+). To rectify this
problem, we consider instead

ψ(ζ) := e−ζ − 1

1 + ζ
.

It is clear that ψ ∈ Ψ
(
S◦
µ+

)
.

Definition 4.58 (Exponential semigroup). Define

e−tT := (1 + tT )−1 + ψ(tT ) .

The exponential semigroup of T satisfies the following key properties.

Proposition 4.59. Let B be a reflexive Banach space and T : B → B ω-sectorial.
Then:

I) ∃c <∞∀t ∈ (0,∞) :
∥∥e−tT∥∥ ≤ c. In particular, e−tT ∈ B(B) for all t > 0.

II) e−tT e−sT = e−(t+s)T .

III) t 7→ e−tT : (0,∞) → B(B) is continuous.

IV) d
dt
e−tT = −T e−tT ⊃ e−tTT .

V) If u ∈ ker(T ), then e−tTu = u.

VI) For all u ∈ B we have

e−tTu −→
t→0

u and e−tTu −→
t→∞

0 .
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VII) We have u ∈ dom(T ) iff limt→0
1
t

(
e−tTu− u

)
exists and −Tu =

limt→0
1
t

(
e−tTu− u

)
.

VIII) If S ∈ C (B) commutes with a resolvent (ζ − T )−1, then S commutes with
e−tT .

Remark 4.60. This is proved by using Theorem 4.56. The derivative in IV) is
just the usual derivative, B(B) is a Banach space.

Let us now return back to the heat equation (4.5). For a given initial datum u0 ∈ B,
define:

u(t) := e−tTu0 .
It is readily verified that u ∈ C1((0,∞),B) and that it solves (4.5).

Proposition 4.61. Let T be an ω-sectorial operator on a reflexive Banach space
B. Then

B∞
T :=

∞⋂
j=1

dom
(
T j
)
⊂ B

is a dense subspace of B. In particular, if u ∈ B, then e−tTu ∈ B∞
T and e−tTu→ u

as t→ 0.

Proof. Let fk :=
(
ζ 7→ ζke−ζ

)
∈ Ψ

(
S◦
µ+

)
, then fk(tT ) ∈ B(B). Clearly, fk(tT ) =

(tT )ke−tT and by explicitly examining dom(fk(tT )) = B, we find that

B = dom(fk(tT )) =
{
u ∈ B

∣∣∣ e−tTu ∈ dom
(
(tT )k

)}
,

and therefore,
e−tTu ∈ dom

(
(tT )k

)
= dom

(
T k
)

.

Since k is arbitrary, we obtain e−tTu ∈ B∞
T . The density is due to Proposi-

tion 4.59 VI) which yields e−tTu→ u as t→ 0.

Example 4.62. Let M ′ be compact with ∂M ′ = ∅. Let
(
E, hE

)
→ M ′ be a

Hermitian vector bundle and ∇ a connection on it. Consider ∆ := ∇∗∇̄.

Let u ∈ L2(M ′, E) and note that by Theorem 3.38 and the Sobolev embedding
theorem,

e−t∆u ∈
∞⋂
j=1

dom
(
∆j
)
=

∞⋂
j=1

H2j(M ′, E) ⊂ C∞(M,E) .

4.8 The H∞-functional calculus

In this section, we illustrate the salient points in the construction of the H∞-
functional calculus. Unlike the ability to take functions of operators by psi-class
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functions, this is a full fledged functional calculus, meaning that functions ζ 7→ 1
and ζ 7→ (z − ζ)−1 when z ∈ res(T ) are within reach of the functional calculus.

Although the functional calculus can be defined on general Banach spaces, we limit
our attention to the Hilbert space case. Our applications only demand this setting
and in addition, it avoid some unnecessary technical hurdles specialising to Hilbert
spaces.

Before we embark on constructing the functional calculus, let us mention its re-
semblance to the Fourier transform. We have already seen in earlier parts that the
Fourier transform can be seen as a functional calculus for the Laplacian on Euclidean
space. To define the Fourier transform on L2(Rn), we first define it in integral form
on Schwarz-class functions, which are a dense subspace of L2(Rn). Then, by proving
the relevant estimates, namely that for Schwarz-class functions the Fourier transform
is bounded in L2(Rn), it is extended by density to all of L2(Rn). The construction
of the H∞ functional calculus is reminiscent of the construction of the Fourier trans-
form, where the psi-class functions now play the role of the Schwarz-class functions.
The estimate required on psi-class functions are captured in the following definition.

Definition 4.63 (H∞-functional calculus). If T is ω-bisectorial and there is a
c <∞ s.t. for all ψ ∈ Ψ

(
S◦
µ

)
we have that

‖ψ(T )‖ ≤ c‖ψ‖∞ ,

then we say that T has an H∞(S◦
µ

)
-functional calculus. The smallest such c we

denote by CH∞(T ).

Remark 4.64. 1. Note that we always have ‖ψ(T )‖ ≤ cψ,T . Here we are
saying that cψ,T has an additional structure, namely cψ,T ≤ c‖ψ‖∞.

2. We are jumping the gun by using the terminology ‘H∞-functional calculus’
for an estimate for psi-class functions. However, the reasons for this choice
of nomenclature will become apparent shortly.

Definition 4.65. Define:

H∞(S◦
µ

)
:=
{
f : S◦

µ ∪ {0} → C
∣∣∣ f is bounded and f |S◦µ ∈ Hol∞

(
S◦
µ

)}
.

Remark 4.66. It is essential that we allow for discontinuities across zero. The
quintessential application we consider, namely spectral projectors to the left or
right halves of the complex plane determined by negative or positive real parts,
are such functions which are discontinuous across zero.
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Lemma 4.67 (Second McIntosh convergence lemma). Suppose T has an
H∞(S◦

µ

)
-functional calculus. Then for all f ∈ H∞(S◦

µ

)
there is a sequence

fn ∈ Ψ
(
S◦
µ

)
such that:

1. fn → f uniformly on compact subsets of S◦
µ, and

2. whenever u ∈ H, the sequence (fn(T )u) is Cauchy.

This is the crucial lemma that allows us to formulate the H∞-functional calculus.

Definition 4.68. If T has an H∞(S◦
µ

)
-functional calculus, then for f ∈ Hol∞

(
S◦
µ

)
define

f(T )u := f(0)Pker(T ),ran(T )u+ lim
n→∞

fn(T )u ,

for u ∈ H.

If fn and f̃n are two different sequences, converging uniformly to f and for which
fn(T )u and f̃n(T )u are Cauchy, then

lim
n→∞

fn(T )u = lim
n→∞

f̃n(T )u .

Therefore, this is well-defined.

Remark 4.69. Note here that it is essential that the kernel of the operator is
handled separately. The reason here is that ker(T ) ⊂ ker(ψ(T )) for ψ ∈ S◦(Sµ).
In a sense, this is also why we are able to account for discontinuities across zero.

There is no great mystery here that the kernel plays a special role. By the very
bisectoriality of T , the points at 0 and ∞ are special as we have desirable resolvent
bounds as we estimate these points.

Proposition 4.70 (Properties of the H∞-functional calculus). For T an
ω-bisectorial operator with an H∞-functional calculus on a Hilbert space H, the
following hold.

I) f 7→ f(T ) : H∞(S◦
µ

)
→ B(B).

II) There is a c <∞ s.t. ‖f(T )‖ ≤ c‖f‖∞.

III) f 7→ f(T ) is an algebra homomorphism, i.e.

(αf + βg)(T ) = αf(T ) + βg(T ) ,
(fg)(T ) = f(T )g(T ) ,

1(T ) = id .

Moreover, (
z 7→ 1

ζ − z

)
(T ) = (ζ − T )−1 for all ζ /∈ Sµ.
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IV) If S ∈ C (H) commutes with a resolvent (ζ − T )−1, then S commutes with
f(T ).

Remark 4.71. If an operator S ∈ C (H) commutes with one resolvent (z−T )−1,
then, since (ζ 7→ (z′ − ζ)−1)(T ) = (z′ − T )−1 for any other z′ ∈ res(T ), we have
that S also commutes with any other resolvent.

While the notion of an H∞-functional calculus for T as defined in Definition 4.63, it
is not always easy to prove that such estimates hold. In the following theorem, orig-
inally proved by McIntosh in [39], is an enormously important equivalent criterion
for detecting whether an operator T has an H∞-functional calculus.

Theorem 4.72 (McIntosh). The following are equivalent:

(I) T has an H∞-functional calculus.

(II) There is a ψ ∈ Ψ
(
S◦
µ

)
not identically 0 on either sector S◦

µ± satisfying the
‘quadratic estimate’∫ ∞

0

‖ψ(tT )u‖2 dt

t
' ‖u‖2 for all u ∈ ran(T ). (4.6)

(III) For all ψ ∈ Ψ
(
S◦
µ

)
not identically 0 on S◦

µ±, the estimate (4.6) is satisfied.

This theorem is what connects the H∞-functional calculus with real-variable har-
monic analysis methods. Let us get an intuitive sense for these quadratic estimates.
The functions ψ ∈ Ψ(S◦

µ) decay polynomially at 0 and ∞, and therefore, they can
be seen as complex ‘bump’ functions. They can be thought of as smoothed out
indicator functions on the complex plane. With this, and considering u ∈ ran(T ) as
a ‘signal’, we can interpret ψ(tT ) as a ‘band-pass filter’ and ψ(tT )u as a band-pass
filter applied to u. What the quadratic estimate in (4.6) then says is that the norm
of u can be reconstructed, up to a constant, through summing over band-pass filters.
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On a manifold, quadratic estimates (4.6) are typically proved through trivialisations.
In the noncompact setting, these trivialisations may need to be chosen carefully,
exploiting geometric features like potential curvature bounds. The advantage of the
quadratic estimates is that, despite localisations, the analysis is actually performed
on an infinite family of operators. Namely, we need to consider t 7→ ψ(tT ) as t ranges
from 0 to ∞. Seeing 0 and ∞ as the high and low frequencies of T respectively, this
amounts to being able to ‘see’ global information regarding the operator despite
localisation. In analysis, particularly in the noncompact setting, this effectively
allows for desired estimates to be obtained under weaker assumptions than trying
to localise the operator T itself.

Example 4.73. Consider

χ±(ζ) :=

{
1 if ± Re(ζ) > 0 ,
0 otherwise ,

then χ± ∈ H∞(S◦
µ

)
. Let

sgn(ζ) := χ+(ζ)− χ−(ζ) .

Then χ±(T ), sgn(T ) ∈ B(H), and T |χ±(T )H : χ±(T )H → χ±(T )H since T trivially
commutes with all (ζ − T )−1.

Then |T | := T sgn(T ) is an ω-sectorial operator with dom(|T |) = dom(T ) and is
called the McIntosh modulus of T .

In the applications which we are interested in, we actually require the quadratic
estimates (4.6) and we access them through an alternative means of establishing
an H∞-functional calculus. More precisely, in applications to differential operators
on manifolds without boundary, elliptic regularity allows us to identify domains of
operators. This identification turns out to be of vital importance to the existence of
an H∞-functional calculus. At the heart of this lies the fact that the H∞-functional
calculus connects in an intimate way to interpolation scales. The precise theorem
that yields us the desired result is given as Corollary 5.5 in [7].

Theorem 4.74 (Auscher-McIntosh-Nahmod). An ω-sectorial operator T
has an H∞-functional calculus if there are α, β > 0 s.t.

dom(Tα) ⊂ dom((T ∗)α) and ‖Tαu‖ ≲ ‖(T ∗)αu‖ and

dom
(
(T ∗)β

)
⊂ dom

(
T β
)

and
∥∥∥(T ∗)βu

∥∥∥ ≲
∥∥T βu∥∥ .

In applications, it is sometimes possible to first establish that the spectral projectors
χ±(T ) are bounded without first establishing a functional calculus. When that
happens, we are able to relate the functional calculus of the ω-sectorial operator |T |
to the ω-bisectorial operator T as given in the following proposition.
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Proposition 4.75. If χ±(T ) ∈ B(H) and |T | has an H∞-functional calculus,
then T has an H∞-functional calculus.

Proof. Let ψ ∈ Ψ
(
S◦
µ

)
, then it is easy to see that

ψ(T ) = ψ(|T | sgn(T )) = ψ(|T |) sgn(T ) .

Since χ±(T ) ∈ B(H) means that sgn(T ) ∈ B(H), we obtain

‖ψ(T )u‖ ' ‖ψ(|T |)u‖ ≤ C‖ψ‖∞ .

Example 4.76. 1. Let T be a self-adjoint operator. Through earlier consid-
erations, namely the construction of the spectral measure via the contour
integrals, we are able to obtain that χ±(T ) ∈ B(H). Note that to define
χ±(T ), we need to consider the injective operator T |ran(T ) : ran(T ) → ran(T ).
Consequently, we have that |T | is a non-negative self-adjoint operator. By
self-adjointness, we have that |T | = |T ∗| and therefore, |T | has an H∞-
functional calculus. Using Proposition 4.75, we conclude that T also has an
H∞-functional calculus.

2. Let M ′ be a compact manifold with ∂M ′ = ∅. Fix an elliptic operator
D ∈ Diffm(E). Further, assume ker

(
D̄
)
= 0, Dω-bisectorial, and χ±(D̄) ∈

B(L2(M ′, E)).

As a consequence of elliptic regularity,

dom
(
D̄
)
= dom

(
D̄∗) = Hm(M ′, E)

and therefore, both D̄ and D̄∗ have discrete spectrum and hence are invertible
ω-bisectorial. Moreover,

∣∣D̄∣∣ = D̄ sgn(D) and sgn
(
D̄
)

commutes with D̄.

dom
(∣∣D̄∣∣) = dom

(∣∣D̄∗∣∣) = Hm(M ′, E) .

Since D is invertible, so is D̄, and hence

‖u‖Hm ' ‖u‖+
∥∥D̄u∥∥ '

∥∥D̄u∥∥ '
∥∥∣∣D̄∣∣u∥∥ ,

similarly
‖u‖Hm '

∥∥∣∣D̄∗∣∣u∥∥ .

On application of Theorem 4.74, we conclude that
∣∣D̄∣∣ has an H∞-functional

calculus. Since we have already assumed that χ±(D̄) ∈ B(L2(M ′, E)), by
Proposition 4.75, we obtain that D̄ has an H∞-functional calculus. It is easy
to see that the same conclusions hold for D∗ by considering D† in place of D.
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4.9 The model problem

Let us start by recalling the neighbourhood U from the geometric and operator
reduction statements found in Lemmas 4.2 and 4.6. There, we have that U is
diffeomorphic to ZR := [0, R) × ∂M , and that D = σt(∂t + A+Rt). As we saw in
Definition 4.7, we extract out the model operator D0 := σ0(∂t + A) on the infinite
cylinder Z := [0,∞) × ∂M . The purpose of this section will be to understand the
model operator D0 on Z.

Proposition 4.77. Let D ∈ Diff1(E,F ) be elliptic and A any adapted boundary
operator. Then the following hold.

I) spec(A) = specp(A) is discrete with smooth finite dimensional generalised
eigenspaces.

II) There are RA > 0 and ω < π
2

such that

spec(A) ⊂ Sω ∪BRA
(0) .

III) There is a cA <∞ s.t. for all ζ 6∈ Sω∪BRA
(0) we have the resolvent estimates

|ζ|
∥∥(ζ − A)−1

∥∥ ≤ cA .

IV) There is a sequence (rj) ⊂ R with limj→−∞ rj = −∞ and limj→∞ rj = ∞
such that for each rj there is an ωj <

π
2

such that Arj := A − rj is ωrj -
bisectorial and invertible.

Proof. We prove II) and III) first. Then I) follows from Corollary 4.24.

In actual fact, to prove II) and III), we need to first examine the spectrum of σA(x, ξ)
at each x ∈ ∂M and ξ ∈ T ∗

x∂M \ {0}. Recall that σA(x, ξ) : Ex → Ex and Ex is a
finite dimensional vector space, and therefore, the spectrum of σA(x, ξ) is finite and
consists only of eigenvalues.

a) Claim: spec(σA(x, ξ)) ∩ R = ∅ for all x ∈ ∂M, ξ ∈ T ∗
x∂M \ {0}.

We prove by contradiction. Suppose there is a ξ ∈ T ∗
x∂M \ {0} and a λ ∈ R and

v 6= 0 s.t.
λv = σA(x, ξ)v = σD(x, τ)

−1
σD(x, ξ)v .

By virtue of the fact that A is first-order, ξ 7→ σA(x, ξ) is an R-linear map, and
therefore, on applying σD(x, τ) to both sides and simplifying, we obtain

σD(x, λτ − ξ)v = 0 .

Since τ and ξ are linearly independent, we have λτ − ξ 6= 0. But this implies that
kerσD(x, λτ − ξ) 6= 0 which contradicts the ellipticity of D.

b) Claim: There exists an ω < π/2 such that spec(ıσA(x, ξ)) ⊂ Sω for all x ∈ ∂M
and ξ ∈ T ∗

x∂M \ {0}.
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Fix an auxiliary metric g∂M on ∂M , and let

S∗∂M :=
{
ξ ∈ T ∗∂M

∣∣∣ |ξ(x)|g∂M (x) = 1
}

,

the co-sphere bundle with respect to g∂M . Clearly S∗∂M is a compact set and there-
fore, the product ∂M×S∗∂M is also compact. By a), we have that dist(spec(σA(x, ξ)),R) >
0. The map

∂M × S∗∂M 3 (x, ξ) → σA(x, ξ)

is continuous, and therefore, the eigenvalues of σA(x, ξ) vary continuously. Then,

∂M × S∗∂M 3 (x, ξ) → dist(spec(σA(x, ξ)),R) > 0

is continuous and therefore, by compactness of ∂M × S∗∂M we obtain a minimum
min(x,ξ)(dist(spec(σA(x, ξ)),R)) > 0. Therefore, there exists an ω < π/2 such that

spec(σA(x, ξ)) ⊂ ıSω .

The map t 7→ σA(x, tξ) is homogeneous of degree 1 and therefore, since every ξ can
be recovered as a point on the line trough 0 and ξ/|ξ|g∂M ,⋃

x∈∂M

⋃
ξ∈T ∗

x∂M

spec(ıσA(x, ξ)) ⊂ Sω .

c) Using b), the claims II) and III) follow from pseudodifferential methods. A
detailed argument is beyond the scope of material here, but it follows in the compact
setting by understanding the spectrum of the principal symbol. The passage from
principal symbol spectra to the L2-spectrum of the closed realisation of an elliptic
differential operator can be found in Theorem 9.3 in [44] by Shubin.

For IV), we note that as a consequence of II), there is a sequence {xj}j∈Z ⊂
Re spec(A) such that limj→±∞ xj = ±∞. Then, due to discreteness of the spectrum
from I), we are able to find rj ∈ R such that the vertical line lrj := {ζ ∈ C | Re ζ = rj}
through rj satisfies lrj ⊂ res(A). In fact, for each such rj, there exists εj > 0 such
that the closed ε-neighbourhood lrj ,εj := {ζ ∈ C : |Re ζ − rj| ≤ ε} of lrj satisfies
lrj ,εj ⊂ res(A). We leave it as an exercise to show that for reach such rj, there exists
an ωj < π/2 such that Arj := A− rj is invertible and ωj-bisectorial.

Remark 4.78. Note that it is unreasonable to expect that spec(A) ⊂ Sω purely
from knowing spec(σA(x, ξ)) ⊂ Sω. This can be seen from a very simple example.
Suppose that A does, indeed, satisfy spec(A) ⊂ Sω. Then, fix any r ∈ R and note
that Ar := A− r satisfies

σAr(x, ξ) = σA(x, ξ) .

However, since r can be chosen arbitrarily, on choosing some λ ∈ spec(A) such
that Imλ 6= 0 and setting r = Reλ, we can see that Imλ ∈ spec(Ar). Therefore,
spec(Ar) 6⊂ Sω for any ω < π/2.

This prompts us to formulate the following.
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Definition 4.79 (Admissible spectral cut/admissible cut/spectral cut).
For an adapted boundary operator A, if for r ∈ R there exists ωr ∈ [0, π/2) such
that Ar := A − r is ωr-bisectorial and invertible, then r is called an admissible
spectral cut or simply an admissible cut or spectral cut.

From now on, we assume that A is ω-bisectorial and invertible. Recall that having
fixed an adapted boundary operator A we obtain D = σt(∂t + A+Rt). We always
have an admissible spectral cut r ∈ R and

D = σt
(
∂t + Arj + (Rt + rj)

)
.

Let us recall the functions χ± ∈ H∞(S◦
µ) which we considered in Example 4.73.

These were precisely the functions

χ±(ζ) =

{
1 if ± Re(ζ) > 0 ,
0 otherwise .

It is easy to see from functional calculus considerations, when χ±(A) can be defined
and is a bounded operator, it is a projector to the spectral subspaces corresponding
to the spectrum located in the complex plane with positive and negative real parts.
Understanding these projectors is of vital importance.

Proposition 4.80. Let A be an ω-bisectorial and invertible adapted boundary op-
erator. Then, for each α ∈ R,

χ±(A), χ±(A∗) ∈ B(Hα(∂M,E)) .

Proof. As we saw in the proof of Proposition 4.77, the crucial point was to obtain
that spec(σA(x, ξ)) ⊂ Sω. Here, this is also of vital importance, coupled with the
fact that A is invertible. Invertibility means that 0 ∈ res(A) and since res(A) is open,
we have an ε > 0 such that Bϵ(0) ⊂ res(A). This coupled with the bisectoriality
of A means that, possibly passing to some ε′ ∈ (0, ε), the line neighbourhood l0,ϵ
of ıR satisfies l0,ϵ ⊂ res(T ). Therefore, when χ±(A) are bounded operators, id =
χ+(A) + χ−(A).

That χ±(A) are bounded on Hα(∂M,E) requires the use of pseudodifferential meth-
ods, beyond the scope of the material here. Its statement and proof can be found
as the main theorem in the paper [24] by Grubb. The idea is to relate these pro-
jectors to logarithms of A, which shows that these projectors are so-called pseudo-
differential operators of order 0. Such operators are bounded on all Sobolev scales
by the compactness of ∂M .

Remark 4.81. Note that χ±(A)∗ = χ±(A∗).
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Theorem 4.82. For A an adapted boundary operator that is invertible and bisec-
torial, the operators |A|, |A∗| = |A|∗, A,A∗ enjoy an H∞-functional calculus. In
particular, for every α > 0,∫ ∞

0

∥∥tα|A|αe−t|A|u∥∥2 dt

t
' ‖u‖2 for all u ∈ L2(∂M,E).

Proof. Recall that |A| = A sgn(A). Since sgn(A) = χ+(A)−χ−(A) ∈ B(L2(∂M,E),
we have that dom(|A|) = dom(A) and |A| is ω-sectorial and invertible. Also,
dom(|A|) = dom(|A|∗) by elliptic regularity for A and A∗. Invertibility then yields

‖|A|u‖ ' ‖|A|u‖+ ‖u‖ ' ‖u‖H1(∂M,E)

and therefore, ‖|A|u‖ ' ‖|A|∗u‖. We then apply Theorem 4.74 to conclude that |A|
(and |A|∗) both enjoy an H∞-functional calculus. By Proposition 4.75, we obtain
that A and A∗ enjoy an H∞-functional calculus.

For the quadratic estimate in the conclusion, note that whenever α > 0,(
ζ 7→ ζαe−ζ

)
∈ Ψ(S◦

µ+) .

By Theorem 4.72, the desired estimate holds for all u ∈ ran(|A|). However, recall
from Proposition 4.50 IV),

L2(∂M,E) = ker(|A|)⊕ ran(|A|) .

Since ker(|A|) = ker(A), the invertibility of A yields ker(|A|) = {0}. Therefore,
L2(∂M,E) = ran(|A|) which completes the proof.

Definition 4.83. We define the Czech and hat spaces of the model operator D0,
formally depending on the boundary adapted operator A:

ȞA(D0) := χ−(A)H
1
2 (∂M,E)⊕ χ+(A)H− 1

2 (∂M,E) , and
ĤA(D0) := χ−(A∗)H− 1

2 (∂M,E)⊕ χ+(A∗)H
1
2 (∂M,E) .

In due course, we will show that ȞA(D0) = Ȟ(D0). This gives a description of Ȟ(D0)
via the operator A which is on the boundary.

Proposition 4.84.
〈
ĤA(D0), ȞA(D0)

〉
is a reflexive perfect pair and

〈·, ·〉|C∞(∂M,E) = 〈·, ·〉|L2(∂M,E).

Proof. From Proposition 3.67, we have that 〈Hα(∂M,E),H−α(∂M,E)〉 is reflexive
with 〈·, ·〉|C∞(∂M,E) = 〈·, ·〉|L2(∂M,E). By Proposition 2.63, since χ±(A), χ±(A∗) are
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bounded projectors on Hα(∂M,E) for all α ∈ R, and χ±(A∗) = χ±(A)∗ w.r.t.
〈Hα(∂M,E),H−α(∂M,E)〉, we obtain 〈χ±(A)Hα(∂M,E), χ±(A∗)H−α(∂M,E)〉 re-
flexive and 〈·, ·〉|C∞(∂M,E) = 〈·, ·〉|L2(∂M,E).

We leave it as an exercise to then show that this yields
〈
ȞA(D0), ĤA(D0)

〉
with

〈·, ·〉|C∞(∂M,E) = 〈·, ·〉|L2(∂M,E).

Remark 4.85. We could have proved this more directly as follows. From Propo-
sition 4.55 along with elliptic regularity, we can assert dom(|A|α) = Hα(∂M,E)
with ‖|A|αu‖ ' ‖u‖Hα for α ∈ [0, 1]. In particular, this means that, for
u, v ∈ C∞(∂M,E), 〈u, v〉 =

〈
|A|αu, |A|−αv

〉
yields the desired paring. Then,

using the density of C∞(∂M,E) in Hα(∂M,E), along with the fact that χ±(A) ∈
B(Hα(∂M,E), we can calculate to obtain the desired conclusion.

Now, note that since D0 = σ0(∂t + A) we obtain that
(
σ−1
0 D0

)∗
= −∂t + A∗.

Definition 4.86 (Extension operators on the cylinder). For u ∈
L2(∂M,E), define the extension operators E and E∗ by

Eu := e−t|A|u and E∗u := e−t|A
∗|u .

Lemma 4.87. For u ∈ C∞(∂M,E) we have Eu ∈ dom(D0,max) and E∗u ∈
dom((σ−1

0 D0)
∗
max) along with the estimates

‖Eu‖D0
≲ ‖u‖ȞA(D0)

and ‖E∗u‖(σ−1
0 D0)

∗ ≲ ‖u‖ĤA(D0)
.

Proof. The fact that Eu ∈ dom(D0,max) and E∗u ∈ dom((σ−1
0 D0)

∗) can be seen
immediately from the definition.

Write u = u+ + u− where u± := χ±(A)u. Then

‖Eu‖D0
≤ ‖Eu+‖D0

+ ‖Eu−‖D0

which justifies us bounding each of the terms on the right hand side by ‖u‖ȞA(D0)
.

Moreover,

∂tEu± = ∂tEu± = ∂te
−t|A|u± = −|A|e−t|A|u± = |A|Eu± .

Recall A = |A| sgn(A) where sgn(A) = χ+(A)− χ−(A).

a) We first analyse the term Eu+. Recall that

‖Eu+‖2D0
= ‖Eu+‖L2fZ,E + ‖D0Eu+‖2L2(Z,E) .
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Therefore, we compute

D0Eu+ = σ0(∂t + A)Eu+
= σ0(∂t + |A| sgn(A))e−t|A|u+
= σ0

(
−|A|e−t|A|u+ + |A| sgn(A)e−t|A|u+

)
= σ0

(
−|A|e−t|A|u+ + |A|e−t|A|u+

)
= 0 .

Here, we have used the fact that

sgn(A)u+ =
(
χ+(A)− χ−(A)

)
χ+(A)u = χ+(a)2u = χ+(a)u = u+

and that

e−t|A|u+ = e−t|A|χ+(A)u = e−t|A|χ+(A)2u

= χ+(A)e−t|A|χ+(A)u = χ+(A)e−t|A|u+

which shows that e−t|A|u+ ∈ χ+(A)L2(∂M,E).

By what we have just proved, we have that

‖Eu+‖2D0
= ‖Eu+‖2L2(Z,E) + ‖D0Eu+‖2L2(Z,E)︸ ︷︷ ︸

=0

=

∫ ∞

0

∥∥e−t|A|u+∥∥2L2(∂M,E)
dt

=

∫ ∞

0

∥∥∥t− 1
2 t

1
2 |A|

1
2 |A|−

1
2 e−t|A|u+

∥∥∥2
L2(∂M,E)

dt

=

∫ ∞

0

∥∥∥t 12 |A| 12 e−t|A||A|− 1
2u+

∥∥∥2
L2(∂M,E)

dt

t

'
∥∥∥|A|− 1

2u+

∥∥∥2
' ‖u+‖2

H− 1
2

,

where the penultimate estimate used Theorem 4.82 and the ultimate estimate follows
from Elliptic regularity along with Proposition 4.55.

b) Let us now estimate ‖Eu−‖D0
. For that, note that

sgn(A)u− =
(
χ+(A)− χ−(A)

)
χ−(A)u = −χ−(A)2u = −u− ,

and therefore,

D0Eu− = σ0

(
−|A|e−t|A|u− + |A|sgn(A)e−t|A|︸ ︷︷ ︸

=−χ−(A)

u−
)

= −2σ0

(
|A|e−t|A|u−

)
.



4.9 The model problem 113

Using this, we obtain

‖Eu−‖2D0
=

∫ ∞

0

∥∥e−t|A|u−∥∥2L2(∂M,E)
dt+ ‖D0Eu−‖2L2(Z,E)

' ‖u−‖2
H− 1

2 (∂M,E)
+ ‖D0Eu−‖2L2(Z,E)

≲ ‖u−‖H 1
2 (∂M,E)

+ ‖D0Eu−‖2L2(Z,E) ,

where the last estimate is by the continuity of H 1
2 ↪→ H− 1

2 .

It remains to estimate ‖D0Eu−‖L2(Z,E):

‖D0Eu−‖2L2(Z,E) '
∫ ∞

0

∥∥|A|e−t|A|u−∥∥2L2(∂M,E)
dt

=

∫ ∞

0

∥∥∥t− 1
2 t

1
2 |A|

1
2 e−t|A||A|

1
2u−

∥∥∥2
L2(∂M,E)

dt

=

∫ ∞

0

∥∥∥t 12 |A| 12 e−t|A||A| 12u−∥∥∥2
L2(∂M,E)

dt

t

'
∥∥∥|A| 12u−∥∥∥2

L2(∂M,E)

' ‖u−‖2
H

1
2 (∂M,E) .

Therefore, we obtain that

‖Eu‖2D0
≲ ‖u−‖H 1

2 (∂M,E)
.

Combining a) and b),

‖Eu‖D0
≤ ‖Eu+‖L2(Z,E) + ‖Eu−‖L2(Z,E)

≲ ‖u+‖H− 1
2 (∂M,E)

+ ‖u+‖H 1
2 (∂M,E)

=
∥∥χ+(A)u

∥∥
H− 1

2 (∂M,E)
+
∥∥χ−(A)u

∥∥
H

1
2 (∂M,E)

' ‖u‖ȞA(D0)
.

The estimate ‖E∗u‖(σ−1
0 D0)

∗ ≲ ‖u‖ĤA(D0)
is obtained similarly.

Remark 4.88. This lemma shows precisely the way in which ‘parabolic’ prob-
lems, i.e., heat equations, relate to elliptic equations in the presence of bound-
ary. An elliptic problem in a cylinder can be seen as a parabolic problem on the
boundary. As we will see in due course, the extension operators E and E∗ are of
fundamental importance in both understanding questions regarding regularity as
well as to establish the surjectivity of the boundary restriction map.
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Lemma 4.89. For all u ∈ C∞
c (Z,E) we have∥∥∥u|∂M∥∥∥

ȞA(D0)
≲ ‖u‖D0

and
∥∥∥u|∂M∥∥∥

ĤA(D0)
≲ ‖u‖(σ−1

0 D0)
∗ .

Proof. Recall the Green’s formula from Proposition 4.9: for u ∈ C∞
c (Z,E) and

v ∈ C∞
c (Z, F ),

〈D0u, v〉 −
〈
u,D†

0v
〉
= −

〈
σ0u|∂M , v|∂M

〉
L2(∂M,F )

.

Given w ∈ C∞(∂M,E), set v :=
(
σ−1
0

)∗E∗w. Then,〈
D0u,

(
σ−1
0

)∗E∗w
〉
−
〈
u,
(
σ−1
0 D0

)∗︸ ︷︷ ︸
=D†(σ−1

0 )
∗

E∗w
〉

= −
〈
σ0u|∂M ,

(
σ−1
0

)∗
w
〉
L2(∂M,F )

= −
〈
u|
∂M
, w
〉
L2(∂M,E)

.

Now estimating the right hand by the left using the Cauchy-Schwartz inequality,∣∣∣〈u|∂M , w〉∣∣∣ ≲ ∥∥σ−1
0 D0u

∥∥
L2(Z,E)

‖E∗w‖+ ‖u‖L2(∂M,E)

∥∥(σ−1
0

)∗E∗w
∥∥
L2(∂M,E)

.

Since σ0 ∈ C∞(∂M,End(E)),∥∥σ−1
0 D0u

∥∥ ≲ ‖D0u‖ ≲ ‖u‖D0

by the definition of the graph norm. Moreover, for similar reasons,

‖u‖ ≲ ‖u‖D0
and ‖E∗w‖L2(Z,E) ≲ ‖E∗w‖(σ−1

0 D0)
∗ .

Therefore, ∣∣∣〈u|∂M , w〉∣∣∣ ≲ ‖u‖D0
‖E∗w‖(σ−1

0 D0)
∗ ≲ ‖u‖D0

‖w‖ĤA(D0)
,

where the ultimate inequality follows from Lemma 4.87. This yields∣∣∣〈u|∂M , w〉∣∣∣
‖w‖ĤA(D0)

≲ ‖u‖D0
,

for all w ∈ C∞(∂M,E).

By Proposition 4.84, we have that
〈
ȞA(D0), ĤA(D0)

〉
and that C∞(∂M,E) is dense

in ȞA(D0) and ĤA(D0) from the density of C∞(∂M,E) in H± 1
2 (∂M,E). Conse-

quently, we obtain

∥∥∥u|∂M∥∥∥
ȞA(D0)

= sup
w∈C∞(∂M,E)

∣∣∣〈u|∂M , w〉∣∣∣
‖w‖ĤA(D0)

≲ ‖u‖D0
.

The estimate
∥∥∥v|∂M∥∥∥ ≲ ‖v‖(σ0)−1D0)∗

is proved similarly.
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Lemma 4.90. The space C∞
c (Z,E) is dense in dom(D0,max).

Proof. On R, we can readily obtain a sequence ηj ∈ C∞
c ([0,∞)) such that ηj → 1

as j → ∞ in L∞([0,∞)) and (∂tηj) ≤ 1. Now, given u ∈ dom(D0,max), let uj = ηju.
It is readily verified that uj ∈ dom(D0,max) and that

D0,maxuj = σ0(∂t + A)uj = ηjσ0D0,maxu− σ0(∂tηj)u .

Therefore, we have that uj → u in dom(D0,max) with sptuj is compact. Mollifying
uj to obtain vϵj ∈ C∞

c (Z,E), we have vϵj → uj in dom(D0,max) as ε → 0. Combining
these facts, we obtain the required conclusion.

Theorem 4.91. For an invertible bisectorial adapted boundary operator A for D
and D0 = σ0(∂t + A), the model operator built from A, we have that

Ȟ(D0) = ȞA(D0) = χ−(A)H
1
2 (∂M,E)⊕ χ+(A)H− 1

2 (∂M,E)

in the sense of Banach spaces (i.e. set equality with equivalent norms).

Proof. a) Claim: Ȟ(D0) ⊂ ȞA(D0).

Let u ∈ dom(D0,max). From Lemma 4.90, there is a sequence (un) ⊂ C∞
c (M,E) s.t.

un → u in the D0-norm. By Lemma 4.89 we have∥∥∥un|∂M − um|∂M
∥∥∥
ȞA(D0)

≲ ‖un − um‖D0,max

and since {un} is D0-norm Cauchy, u|∂M = limn→∞ un|∂M is well-defined. Moreover,∥∥∥u|∂M∥∥∥
ȞA(D0)

= lim
n→∞

∥∥∥un|∂M∥∥∥
ȞA(D0)

≲ lim
n→∞

‖un‖D0
= ‖u‖D0

.

b) Claim: ȞA(D0) ⊂ Ȟ(D0).

Let w ∈ ȞA(D0). Then by Lemma 4.87 we have Ew ∈ dom(D0,max), so Ew|∂M = w.

c) A priori ker
(
u 7→ u|∂M

)
= dom(D0,min), and u 7→ u|∂M : dom(D0,max) → ȞA(D0)

is a bounded surjection with ker
(
u 7→ u|∂M

)
= dom(D0,min). Since we have already

shown that ȞA(D0) = Ȟ(D0), we conclude that the norms are comparable.

To emphasise that we are not restricting ourselves, let us first consider the reduc-
tion of a model operator for a general adapted boundary operator to an invertible
bisectorial one.
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Corollary 4.92. If A is any boundary adapted operator and let r be an admissible
spectral cut, i.e. Ar := A− r is bisectorial and invertible. Let D = σ0(∂t + A) and
D0 := σ0(∂t + Ar) the model operator for D with the adapted boundary operator
Ar. Then,

Ȟ(D) = Ȟ(D0) = ȞAr(D0) .

Proof. We show that dom(D0,max) = dom(D0,max) with ‖u‖D ' ‖u‖D0
. From

Lemma 4.90, we have that C∞
c (Z,E) is dense in dom(D0,max). The same argu-

ment yields that C∞
c (Z,E) is dense in dom(Dr,max). Therefore, it suffices to prove

‖u‖D ' ‖u‖D0
for u ∈ C∞

c (Z,E). So, fix u ∈ C∞
c (Z,E) and note that

‖u‖2D0
= ‖u‖2 + ‖D0u‖2 ' ‖u‖2 + ‖Du+ σ0ru‖2 ' ‖u‖2 + ‖Du‖2 = ‖u‖2D .

Remark 4.93. Although not straightforward, it is possible to show that

χ+(A)H− 1
2 (∂M,E) = γ ker(D0,max) .

The key point is that we have described the Hardy space of solutions of D0 in
terms of an operator on the boundary.

Fix u ∈ C∞
cc (Z,E) and v ∈ C∞

cc (Z, F ). Then, we compute

〈D0u, v〉 = 〈σ0(∂t + A)u, v〉
= 〈(∂t + A)u,σ∗

0v〉
= 〈u, (−∂t + A∗)σ∗

0v〉
=
〈
u,−σ∗

0

(
∂t − (σ∗

0)
−1A∗σ∗

0

)
v
〉

.

This shows us that D†
0 = −σ∗

0

(
∂t − (σ∗

0)
−1A∗σ∗

0

)
.

Definition 4.94 (Induced formal adjoint adapted boundary operator from A).
Given an adapted boundary operator A for D, we define the induced adapted
boundary operator from A for D† to be

Ã := −(σ∗
0)

−1A∗σ∗
0 .

Remark 4.95. 1. Note here that A∗ is really A†, but as we have remarked
before, on the manifold ∂M , as it has no boundary, a differential operator
has a unique extension. Therefore, this is only a slight abuse of notation.

2. From inspection, it is easy to see that the induced formal adjoint adapted
boundary operator Ã = (σ−1

0 )∗A∗σ∗
0 is an adapted boundary operator for

D†.
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Lemma 4.96. The map
(
σ−1
0

)∗
: E|∂M → F |∂M induces an isomorphism

ĤA(D0)
∼=→ ȞÃ

(
D†

0

)
,

where Ã is the induced formal adjoint adapted boundary operator from A.

The pairing β(u, v) := −〈σ0u, v〉L2(∂M,F ) for u ∈ C∞(∂M,E), v ∈ C∞(∂M,F )

extends to a reflexive
〈
ȞA(D0), ȞÃ

(
D†

0

)〉
.

Proof. Proposition 4.84 yields that
〈
ĤA(D0), ȞA(D0)

〉
is reflexive and its restriction

to C∞(∂M,E) agrees with the L2-inner product. If
(
σ−1
0

)∗
: ĤA(D0) → ȞÃ

(
D†

0

)
is

an isomorphism, then clearly β is a perfect pairing.

We prove that
(
σ−1
0

)∗ is an isomorphism. Clearly (σ−1
0 )∗ : C∞(∂M,E) → C∞(∂M,F )

is a bijection. By the density of C∞(∂M,E) in ĤA(D0) and the density of C∞(∂M,F )
in ȞÃ(D

†
0), it suffices to prove

∥∥(σ−1
0 )∗u

∥∥
ȞÃ(D†

0)
' ‖u‖ĤÃ(D0)

when u ∈ C∞(∂M,E).

For u ∈ C∞(∂M,E), we estimate∥∥(σ−1
0

)∗
u
∥∥2
ȞÃ(D0)

≲
∥∥(σ−1

0

)∗E∗u
∥∥2
D†

0

=
∥∥D†(σ−1

0

)∗E∗u
∥∥2
L2(Z)

+
∥∥(σ−1

0

)∗E∗u
∥∥2
L2(Z)

=
∥∥−σ∗

0

(
∂t −

(
σ−1
0

)∗
A∗σ0

)(
σ−1
0

)∗E∗u
∥∥2
L2(Z)

+
∥∥(σ−1

0

)∗E∗u
∥∥2
L2(Z)

= ‖(−∂t − A∗)E∗u‖2L2(Z) +
∥∥(σ−1

0

)∗E∗u
∥∥2
L2(Z)

= ‖E∗u‖2(σ−1
0 D)

∗

≲ ‖u‖2ĤA(D0)
,

where the ultimate inequality follows from Lemma 4.87.

To obtain the reverse inequality, let Ẽu := e−t|Ã|u be the extension operator for D†
0.

We have
‖(σ∗

0)v‖ĤA(D0)
≲
∥∥∥σ∗

0Ẽv
∥∥∥
(σ−1

0 D0)
∗ ≲

∥∥∥Ẽv∥∥∥
D†

0

≲ ‖v‖ȞÃ(D
†
0)

,

where the first inequality follows from Lemma 4.89 since (σ∗
0Eu)|∂M = σ∗

0u, and the
last inequality from applying Lemma 4.87 with D†

0 and ȞÃ(D
†
0) in place of D0 and

ȞA(D0).

It is important to emphasise the significance of this lemma. For this, let us consider
what we have achieved so far. Given an invertible bisectorial adapted boundary
operator A for D, we are able to consider the model problem D0 and its formal ad-
joint D†

0. The boundary value problems that interest us are now extensions of D0,min

contained in D0,max. As we have seen already, we are able to study the space ȞA(D0)
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instead. A boundary condition is a closed subspace B ⊂ ȞA(D0), and the operator
we obtain is D0,B with domain dom(DB) =

{
u ∈ dom(D0,max) : u|∂M ∈ B

}
.

Now, consider now the adjoint operator D∗
0,B. Again, as we have seen D∗

0,B ⊂ D†
0,max.

In order to study D0,B and its adjoint D∗
0,B, in the absence of Lemma 4.96, we would

be required to study ȞA(D0) as well as ȞÃ(D
†
0). In particular, we have to study

function spaces over two potentially distinct bundles.

However, Lemma 4.96 simplifies this picture significantly. Since ȞÃ(D
†
0) is isomor-

phic to ĤA(D0), and the isomorphism is the concrete object (σ−1
0 )∗, we can instead

study spaces induced by A and over only one bundle, namely E|∂M . More concretely,
recall that

B† =
{
v|∂M

∣∣∣ v ∈ dom
(
D∗

0,B

)
⊂ dom

(
D†

0,max

)}
⊂ ȞÃ

(
D†

0

)
is the boundary condition for D∗

0,B, which is a subspace of a function space over F .
However, by Lemma 4.96, we can instead study the object

σ∗
0B

† ⊂ ĤA(D0) ,

which is a subspace of a function space over E. Therefore, in what follows, we
attempt to obtain a more refined understanding of the action of the map (σ−1

0 )∗.

Lemma 4.97. We have
(
σ−1
0

)∗
: χ±(A∗)H± 1

2 (∂M,E) → χ∓
(
Ã
)
H± 1

2 (∂M,F ).

Proof. By virtue of the fact that (ζ−U−1AU)−1 = U(ζ−A)−1U , through functional
calculus, we obtain

χ∓
(
Ã
)
= χ∓(−(σ−1

0

)∗
A∗σ∗

0

)
=
(
σ−1
0

)∗
χ∓(−A∗)σ∗

0

=
(
σ−1
0

)∗
χ±(A∗)σ∗

0 .

The map σ∗
0 : H

α(∂M,E) → Hα(∂M,F ) is a Banach space isomorphism, and there-
fore, the conclusion follows.

This result is certainly to be expected. Recall that ĤA(D0) = χ−(A)H− 1
2 (∂M,E)⊕

χ+(A)H
1
2 (∂M,E). By Lemma 4.96, we know that ĤA(D0) ∼= ȞÃ(D

†
0) via (σ−1

0 )∗.
Given that χ±(A)Hα(∂M,E) is infinite dimensional, we would certainly expect that
the H± 1

2 (∂M,E) part of ĤA(D0) be mapped in a nontrivial way to the H±(∂M,F ).

Proposition 4.98. For u ∈ dom(D0,max) and v ∈ dom
(
D†

0,max

)
,

〈D0,maxu, v〉L2(Z,F ) −
〈
u,D†

0,maxv
〉
L2(Z,E)

= −
〈
u|∂M , (σ

∗
0)v|∂M

〉
ȞA(D0)×ĤA(D0)

.
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Proof. For u ∈ C∞
c (∂M,E) and v ∈ C∞

c (∂M,F ), we have by the Greens formula
in Proposition 4.9 that the required formula holds. Since β(x, y) = 〈x,σ∗

0y〉L2(∂M,E)

from Lemma 4.96 and the spaces C∞
c (∂M) and C∞

c (∂M) are dense in dom(D0,max)

and dom
(
D†

0,max

)
respectively by Lemma 4.90, the conclusion follows.

Proposition 4.99. Let B ⊂ ȞA(D0) be a boundary condition, i.e. a closed sub-
space. Then the adjoint boundary condition B† is precisely

B† = (σ∗
0)

−1B⊥,〈ĤA(D0),ȞA(D0)〉 .

Proof. This is a straightforward using Proposition 4.98 and Lemma 4.96

Remark 4.100. By Corollary 4.92, the discussion we had above holds for a gen-
eral boundary adapted operator A and its associated model operator by first pass-
ing to Ar where r is an admissible spectral cut.

4.10 Maximal regularity

Consider the situation that M ′ is a compact manifold without boundary, and that
D is an m-th order differential operator. We have already mentioned that, due
to elliptic regularity,dom(D) = Hm(M ′, E). Moreover, it is classical fact that D :
Hm+k(M ′, E) → Hk(M ′, E) for k ≥ 0. In making these assertions, we are implicitly
identifying the operator D with Dmax = Dmin = D.

When M is a compact manifold with boundary, we have already seen that Dmax 6=
Dmin and in fact, generally, dom(Dmax)⧸dom(Dmin)

is infinite dimensional. There-
fore, we expect mapping properties for D for Sobolev spaces up to the boundary
on M , which mirrors that of the the boundaryless scenario, would be captured by
a good class of boundary conditions. To understand such boundary conditions, we
need to study dom(Dmax)∩Hm+k(M,E) and characterise this space via information
on the boundary.

We restrict our considerations to m = 1 and first consider the model operator D0 on
Z given an invertible adapted boundary operator A for D. In order to do that, we
need to understand a more abstract result called the maximal regularity for injective
sectorial operators.

Let I ⊂ R be an interval and B a Banach space. Define

Lp(I,B) :=
{
f : I → B

∣∣∣∣ ∫
I

‖f(t)‖pB dt <∞
}

.
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Theorem 4.101 (L2-maximal regularity, Theorem 2.1 in [21]). Let T be
an injective densely-defined ω-sectorial operator for an ω ∈

[
0, π

2

)
on a Hilbert

space H. Fix τ ∈ (0,∞]. Then for every f ∈ L2([0, τ),H), there exists a unique
solution to {

∂tu+ Tu = f a.e. on (0, τ) ,
u(0) = 0

(4.7)

satisfying

I) u ∈ L2([0, τ0], dom(T )) whenever τ0 <∞ and τ0 ≤ τ .

II) ∂tu ∈ L2([0, τ),H) .

III) There is a constant CMR <∞ such that∫ τ

0

‖∂tu(t)‖2H dt+

∫ τ

0

‖Tu(t)‖2H dt ≤ CMR

∫ τ

0

‖f(t)‖2H dt . (4.8)

The constant depends on ω, T and CH∞(T ), the constant appearing in the
H∞-functional calculus of T . However, it is independent of τ and f .

The solution generator is

W (·; ·) : [0, τ)× L2([0, τ),H) → L2([0, τ0], dom(T )) ,

given by

u(t) := W (t; f) :=

∫ t

0

e−(t−s)Tf(s) ds .

Section 9.3 in [26] has a more detailed discussion surrounding this this topic.

Remark 4.102. 1. The condition I) is only non-trivial when τ = ∞. There,
it is saying that, for each finite τ0 we have that

‖u‖2L2([0,τ0),dom(T )) =

∫ τ0

0

(
‖u(t)‖2H + ‖Tu(t)‖2H dt

)
<∞ .

It may very well be that,
lim
τ0→∞

‖u‖L2([0,τ0),dom(T )) = ∞ ,

so we cannot expect that ‖u‖L2([0,∞),dom(T )) to be finite, even though for each
τ0 <∞, we have u ∈ L2([0, τ0), dom(T )).

We see from (4.8) that∫ ∞

0

‖Tu(t)‖2H dt ≤
∫ ∞

0

‖f(t)‖2H dt <∞ ,

and so the failure for u ∈ L2([0,∞), dom(T )) is due to the fact that, in
general, ∫ ∞

0

‖u(t)‖2H dt = ∞ .
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That is, in general, u /∈ L2([0,∞),H).

If, however, T is invertible, then

‖u‖ ≲ ‖Tu‖

and therefore, from the maximal regularity estimate (4.8), we find u ∈
L2((0,∞),H).

2. The role of τ is to be able to be flexible with the kind of functions that
can be considered as solutions. More precisely, for a small τ , there would
be more functions f : [0, τ) → H than those arising as f = f̃ |[0,τ ] where
f̃ : [0,∞) → H.

3. We have only considered maximal regularity for Hilbert spaces, but it is also
of importance to consider this on Banach spaces.

On a Hilbert space, maximal regularity is a consequence of the fact that
that T generates an analytic semigroup. Since ω < π/2, the semigroup
is analytic on S◦

(ω−π
2
)+. However, in a general Banach space, the actual

condition underlying the theory of maximal regularity is actually a ‘wave
equation’. This notion of a wave equation can be conceptually understood
in the Hilbert space setting. A sectorial operator T on a Hilbert space has
an H∞-functional calculus iff there is ϑ ∈ [0,∞) and k ∈ (0,∞) such that

‖T ıs‖ ≤ keϑ|s|

for all s ∈ R. The latter property is termed Bounded Imaginary Powers
(BIP). Under sufficiently general conditions, T ıs = elog(T )ıs. This is a gener-
ator for solutions to the wave equation

∂tu+ ı log(T )u = 0 .

In general (i.e. in a Banach space), having an H∞-functional calculus is only
sufficient for BIP.

In light of Theorem 4.101, we truncate and consider a finite cylinder. That is, we
fix a % ∈ (0,∞), which will be chosen later in application, and restrict our attention
to

Zϱ̄ := [0, %]× ∂M .

We now consider D and E restricted to Zϱ̄. However, now

∂Zϱ̄ = ({0} × ∂M) t ({%} × ∂M) ,

and therefore, it now has an extra ‘fake’ boundary in addition to the original ‘real’
boundary {0} × ∂M , which we previously denoted as ∂M and continue to do so.

In the fullness of time, we will see that this ‘fake’ boundary is purely a technical
necessity. When applying the results of this section, we always institute a cutoff
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η ∈ C∞
c ([0,∞)) satisfying

η(t) =

{
1 if t ∈

[
0, 1

2

)
,

0 if t ∈
[
3
4
,∞
)

.

Then, for a given u ∈ dom(D0,max),

u|∂M = u(0) = η(0)u(0) = ηu|∂M ,

and therefore, we have that ηu ∈ dom(D0,max∩) dom(D0,max, Zϱ̄). Moreover,

(1− ηu)(0) = (ηu)(%) = 0

and therefore, (1 − ηu) ∈ dom(D0,min). This shows that, in order to understand
properties of u up to the boundary, it suffices to study ηu.

From here on, for an invertible ω-bisectorial adapted boundary operator A, in order
to apply Theorem 4.101, we set T := |A|, τ0 := % to be chosen later, τ := ∞,
H := L2(Zϱ̄, E).

Definition 4.103. Define:

(S0u)(t) :=

∫ t

0

e−(t−s)|A|χ+(A)u(s) ds−
∫ ϱ

t

e−(s−t)|A|χ−(A)u(s) ds

and
(Cϱu)(s) := u(%− s) .

Lemma 4.104. The following hold.

I) S0u(t) = W (t;χ+(A)u)−W (%− t;χ−(A)Cϱu).

II) χ+(A)(S0u)(0) = 0 and χ−(A)(S0u)(%) = 0.

III) σ−1
0 D0S0 = (∂t + A)S0 = id.

Proof. a) Ad I). The first term is clear, and for the second term, apply coordinate
transform s 7→ %− s and compute.

b) Ad II). From Proposition 4.70 IV), we have that the functional calculus com-
mutes with itself. Moreover, we can interchange the application of the projector
and integral.

c) Ad III). Write u := u+−u− where u± = χ±(A)u. It suffices to show (∂t + A)S0u± =
u±. Using |A| = A sgn(A), we get

∂tS0u+ = −A sgn(A)S0u+ + u+ ,

since u+ = χ+(A)u we have sgn(A)u+ = u+ and therefore (∂t + A)S0u+ = u+.

The proof (∂t + A)S0u− = u− is similar, but a little more involved. We leave it as
an exercise.
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Notation 4.105. For a differential operator X, we denote the domain of it for
sections on U ⊂M as dom(X;U).

Since the operator |A|l : L2(∂M,E) → L2(∂M,E) with dom(|A|) = Hl(∂M,E), we
can also consider A : L2(Zϱ, E) → L2(Zϱ, E) with domain

dom(|A|l;Zϱ) =
{
u ∈ L2(Zϱ, E)

∣∣∣ u(t) ∈ dom(|A|l)
}

with the induced norm∥∥∥|A|lu∥∥∥2
L2(Zϱ,E)

=

∫ ρ

0

(
‖u(t)‖2L2(∂M,E) + ‖|A|u(t)‖2L2(∂M,E)

)
.

Lemma 4.106. We have

Hk(Zϱ̄, E) =
k⋂
l=0

dom
(
∂k−lt |A|l;Zϱ

)
and ‖u‖Hk(Zϱ̄,E) '

k∑
l=0

∥∥∥∂k−lt |A|lu
∥∥∥2
L2(Zϱ̄,E)

.

Proof. Using the fact that A is elliptic, as we have already stated, we have that
dom(|A|k) = Hk(∂M,E). Through localisation, it is a routine calculation to show
that, for u ∈ C∞(Zϱ, E),

‖u‖Hk(Zϱ̄,E) '
k∑
l=0

∥∥∥∂k−lt |A|lu
∥∥∥2
L2(Zϱ̄,E)

.

The space C∞(Zϱ, E) is dense in both Hk(Zϱ̄, E) and dom
(
∂k−lt |A|l;Zϱ

)
and so the

desired conclusion follows.

Lemma 4.107. S0 : Hk(Zϱ̄, E) → Hk+1(Zϱ̄, E) is a bounded operator and the
bound is independent of %.

Proof. a) Case k = 0.

From Lemma 4.106, we have that when v ∈ H1(Zϱ̄, E),

‖v‖2H1(Zϱ̄)
'
∫ ϱ

0

‖∂tv‖2L2(∂M,E) dt+

∫ ϱ

0

‖|A|v‖2L2(∂M,E) dt .
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Recalling that C∞(Zϱ̄, E) is dense in Hk(Zϱ̄, E) for all k let u ∈ C∞(Zϱ̄, E) and
v := S0u and compute

‖S0u‖2H1 '
∫ ϱ

0

(
‖∂tS0u(t)‖2L2(∂M,E) + ‖|A|u(t)‖2L2(∂M,E)

)
dt

≲
∫ ϱ

0

∥∥∂tW(t;χ+(A)u
)∥∥2

L2(∂M,E)
dt

+

∫ ϱ

0

∥∥|A|W(t;χ+(A)u
)∥∥2

L2(∂M,E)
dt

+

∫ ϱ

0

∥∥∂tW(%− t;χ−(A)Cϱu
)∥∥2

L2(∂M,E)
dt

+

∫ ϱ

0

∥∥|A|W(%− t;χ−(A)Cϱu
)∥∥2

L2(∂M,E)
dt

≲
∫ ϱ

0

∥∥χ+(A)u(t)
∥∥2
L2(∂M,E)

dt+

∫ ϱ

0

∥∥χ−(A)(Cϱu)(t)
∥∥2
L2(∂M,E)

dt

≲
∫ ϱ

0

(∥∥χ+(A)u(t)
∥∥2
L2(∂M,E)

+
∥∥χ−(A)u(t)

∥∥2
L2(∂M,E)

)
dt

'
∫ ϱ

0

‖u(t)‖2L2(∂M,E) dt

= ‖u‖L2(Zϱ̄,E) .

where the third inequality follows from Theorem 4.101 and the fourth from the fact
that Cϱ : L2(Zϱ̄) → L2(Zϱ̄) is an isometry and commutes with χ±(A). By density,
S0 : L

2(Zϱ̄, E) → H1(Zϱ̄, E).

b) Case k > 0.

Let f ∈ dom
(
|A|l
)
= Hl(∂M,E). Since by Theorem 4.101 we have that

∂tW (t; f) + |A|W (t; f) = f(t) ,

and using the fact that ∂t and |A|l commutes, we obtain∂
l
tW (t; f) = (−1)lW

(
t; |A|lf

)
(t) +

∑l−1
m=0 ∂

l−1−m
t |A|mf(t) ,

∂ltW (%− t; f) = (−1)l+1W
(
%− t; |A|lf

)
+
∑l−1

m=0 ∂
l−1−m
t |A|mf(t) .

(4.9)

Again by density, assume f ∈ C∞(Zϱ̄, E). By the Lemma 4.106, it suffices to show
that for l ∈ [0, k + 1] we have∥∥∥∂lt|A|k+1−lW (·; f)

∥∥∥
L2(Zϱ̄,E)

≲ ‖f‖Hk(Zϱ̄,E) .

It is readily verified that |A|k commutes with Banach-valued integration in t, and
by the regularity of f , it particularly satisfies f ∈ dom(|A|l−1). Therefore,

|A|lW (t; f) = |A|l
∫ ϱ

0

e−(t−s)|A|f(s) ds

= |A|
∫ ϱ

0

e−(t−s)|A||A|l−1f(s) ds = |A|W
(
t; |A|l−1f

)
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For l = 0: ∥∥∥|A|k+1W (·; f)
∥∥∥2
L(Zϱ̄,E)

=
∥∥∥|A|W(·; |A|kf)∥∥∥

L2(Zϱ̄,E)

≲
∥∥∥|A|kf∥∥∥

L2(Zϱ̄,E)

≲ ‖f‖Hk(Zϱ̄,E) ,

where the second inequality follows from Theorem 4.101 and the last inequality from
Lemma 4.106.

For l ≥ 1: apply |A|k+1−l to (4.9) to obtain

∂lt|A|
k+1−lW (t; f) = −1|A|W

(
t; |A|kf

)
+

l−1∑
m=0

∂l−1−m
t |A|k+1+m−lf(t) ,

and then estimate∥∥∥∂lt|A|k+1−lW (·; f)
∥∥∥
L2(Zϱ̄,E)

≤
∥∥∥|A|W(·; |A|kf)∥∥∥

L2(Zϱ̄,E)

+
l−1∑
m=0

∥∥∥∂l−1−m
t |A|k+1+m+lf

∥∥∥
L2(Zϱ̄,E)

≲
∥∥∥|A|kf∥∥∥

L2(Zϱ̄,E)
+ ‖f‖Hk(Zϱ̄,E)

≲ ‖f‖Hk(Zϱ̄,E) ,

where in the second inequality we have again used Theorem 4.101.

Similarly, we can estimate the term W (Cϱ(·); f), noting Cϱ : Hk → Hk isometrically.
To finish the proof, we note that for u ∈ C∞(Zϱ̄, E)

‖S0u‖Hk+1(Zϱ̄,E) ≤
∥∥W(·;χ+(A)u

)∥∥
Hk+1(Zϱ̄,E)

+
∥∥W(Cϱ(·);χ−(A)Cϱu

)∥∥
Hk+1(Zϱ̄,E)

≲
∥∥χ+(A)u

∥∥
Hk(Zϱ̄)

+
∥∥χ−(A)u

∥∥
Hk(Zϱ̄,E)

' ‖u‖Hk(Zϱ̄,E) .

Since C∞(Zϱ̄, E) is dense in Hk(Zϱ̄), we obtain S0 : H
k(Zϱ̄, E) → Hk+1(Zϱ̄, E).

c) Lastly, to prove the assertion that the constant in the bound for S0 is independent
of %, note that this constant is built up of universal constants and the constant arising
from the invocation of Theorem 4.101. An important consequence of this theorem
is that the constant is independent of %.

We now want to consider the way in which D0 maps between Sobolev scales as
a Banach space isomorphism. This can only happen by imposing an appropriate
boundary condition, both at the real and artificial boundaries {0}× ∂M and {%}×
∂M respectively.
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Definition 4.108. Define

B0 := χ−(A)H
1
2 ({0} × ∂M,E)× χ+(A)H

1
2 ({%} × ∂M,E) ,

Hk(Zϱ̄, E;B0) :=
{
u ∈ Hk(Zϱ̄, E)

∣∣ (u(0), u(%)) ∈ B0

}
.

Remark 4.109. Let A0,ρ = A0 × Aϱ be the structure of an adapted boundary
operator for D0 on Zϱ̄, where A0 acts on 0× ∂M and Aϱ acts on {%} × ∂M . The
Czech space also splits as

ȞA0,ρ(D0) = ȞA0(D0)× ȞAϱ(D0) .

Denote the inward pointing vectorfield along the ‘real’ boundary {0} × ∂M by
τ0. Since we need an inward pointing vectorfield τρ on the ‘fake’ boundary also,
a reasonable choice would be −τ0 by first identifying points at the boundary
{0} × ∂M and {%} × ∂M in an appropriate manner. More precisely, we can
take τρ(ρ, x) = −τ0(0, x).

By choosing the adapted operator on the ‘real’ boundary to be A, we would then
write Aϱ = −A. With this choice, the Czech space would then be

ȞA0,ρ(D0) = χ−(A)H
1
2 ({0} × ∂M,E)⊕ χ+(A)H− 1

2 ({0} × ∂M,E)

× χ+(A)H
1
2 ({%} × ∂M,E)⊕ χ−(A)H− 1

2 ({%} × ∂M,E) .

From this, we can read of the subspaces of ȞA0,ρ(D0) which has H 1
2 ({0, ρ}×∂M,E)

regularity. Therefore, it is clear the reasons for which B0 is constructed from
χ−(A)H

1
2 ({0}×∂M,E) and χ+(A)H

1
2 ({%}×∂M,E), rather than χ−(A)H

1
2 ({%}×

∂M,E) as would be the naïve expectation.

Recalling Notation 4.105, we let dom(D0,max;Zϱ̄) ⊂ L2(Zϱ̄, E) denote the maximal
domain of D0 in L2(Zϱ̄, E).

Proposition 4.110. The following hold:

I) For all u ∈ dom(D0,max, Zϱ̄) with χ−(A)(u(%, ·)) = 0 we have(
I − S0σ

−1
0 D0

)
u(t, ·) = (I − S0(∂t + A))u(t, ·)

= e−t|A|χ+(A)(u(0)) .
(4.10)

II) For all k ∈ N,
D0 : H

k+1(Zϱ̄, E;B0) → Hk(Zϱ̄, F )

is a Banach space isomorphism with inverse S0σ
−1
0 .
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Remark 4.111. The assumption χ−(A)(u(%)) = 0 is always satisfied in appli-
cation. As we said before, {%} × ∂M is the ‘fake’ boundary, which arises from
restricting our considerations to a finite cylinder. In applications, we localise our
problem to near the boundary. More precisely, we institute a cutoff to reduce to
the case of u with spt(u) ⊂ [0, %). This implies u(%) = 0 and in particular that
χ−(A)(u(%)) = 0. Without this assumption, the formula would contain the term

e−(ϱ−t)|A|χ−(A)(u(%))

in 4.10.

Proof. a) Ad I). By linearity of D0, we can write D0u = D0u++D0u− with u±(t) =
χ±(A)u(t). Moreover,

σ−1
0 D0u±(s) = ∂su±(s)± |A| sgn(A)u±(s)

since A = |A| sgn(A). Therefore,

S0σ
−1
0 u+(t) =

∫ t

0

e−(t−s)|A|(∂su+(s) + |A|u+(s)) ds

=

∫ t

0

∂s
(
e−(t−s)|A|u+

)
(s) ds

=
[
e−(t−s)|A|u+(s)

]t
s=0

= u+(t)− e−t|A|u+(0) ,

where in the third equality, we use a Banach-valued fundamental theorem of calculus
that is readily verified. A broad outline of these ideas can be found in the MSc thesis
of Kreuter in [34]. The book [15] by Cazenave and Haraux is a standard reference
that gives a detailed account. From this calculation, we deduce that(

I − S0σ
−1
0 D0

)
u+(t) = e−t|A|χ+(A)(u(0)) .

A similar calculation together with χ−(A)u(%) = 0 yields that(
I − S0σ

−1
0 D0

)
u− = 0 .

Together, obtain I).

b) Ad II). If u ∈ Hk+1(Zϱ̄, E;B0), then χ+(A)u(0) = 0 and χ−(A)u(%) = 0, so by
I), we have that u = S0σ

−1
0 D0u. Since σ0 smooth and invertible,

D0 : H
k+1(Zϱ̄, E;B0) → Hk(Zϱ̄, E)

is a bounded isomorphism.

We are now concerned with proving regularity up to the boundary in the cylinder.
For that, we first note the following important theorem.
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Theorem 4.112 (Interior elliptic regularity). Let D be a first-order differen-
tial operator on a manifold M with boundary. Let u ∈ dom(Dmax) with sptu ⊂
M \ U , where U is a neighbourhood of the boundary. Then if Du ∈ Hk

loc(M,F ),
u ∈ Hk+1

loc (M,E)

Theorem 4.113 (Regularity up to boundary in Z).

dom(D0,max) ∩ Hk+1
loc (Z,E) =

{
u ∈ dom(D0,max)

∣∣∣ D0u ∈ Hk
loc(Z,E)

and χ+(A)
(
u|
∂M

)
∈ Hk+ 1

2 (∂M,E)
}

.

Remark 4.114. Note that the set to the right hand side is precisely{
u ∈ dom(D0,max)

∣∣∣ D0u ∈ Hk
loc(Z,E) and u|∂M ∈ Hk+ 1

2 (∂M,E)
}

.

That is, from the theorem, we deduce that χ+(A)
(
u|∂M

)
∈ Hk+ 1

2 (∂M,E) is
automatic.

Proof. a) ‘⊂’:

Let u ∈ dom(D0,max) ∩ Hk+1
loc (Z,E). Fix some % <∞ and let η ∈ C∞

c ([0,∞)) s.t.

η(t) =

{
1 if t ∈

[
0, 1

2
%
)

,
0 if t ∈

[
3
4
%,∞

)
.

Then u = ηu + (1− η)u and ηu|∂M = u|∂M . Since (1− µ)u|∂M = 0, using interior
elliptic regularity from Theorem 4.112, we obtain D0(1− η)u ∈ Hk

loc(E).

Let v := ηu ∈ Hk(Zϱ̄, E) and u|∂M = v|∂M ∈ Hk+ 1
2 (∂M,E) by hypothesis. In partic-

ular, χ+(A)
(
u|∂M

)
∈ Hk+ 1

2 (∂M,E). The assertion D0v ∈ Hk(Zϱ̄, E) is immediate.

b) ‘⊃’:

Let u ∈ dom(D0,max) with D0u ∈ Hk
loc(Z,E) and χ+(A)

(
u|∂M

)
∈ Hk+ 1

2 (∂M,E).
Using cutoff η from above, we see that spt((1− η)u) ⊂ Z̊ so in particular, (1− η)u ∈
dom(D0,min). Since D0 is a first-order differential operator, we have that

D0(1− η)u = D0u− σD0(·, dη)u− ηD0

and since D0u ∈ Hk(Z,E), we have that D0(1 − ηu) ∈ Hk
loc(Z,E). By ellipticity

of D0, using interior elliptic regularity as before from Theorem 4.112, we obtain
(1− η)u ∈ Hk+1

loc (Z,E).

Now, let us consider the term which contains the boundary information. For that,
set v := ηu. It is easy to see that

v(0) = u|∂M and v(%) = 0 .
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Using Proposition 4.110 (4.10),

v(t) = S0σ
−1
0 D0v(t) + e−t|A|

(
χ+(A)v(0)

)
=: v0(t) + v1(t) .

From Lemma 4.107, we have that S0 : Hk(Zϱ̄, E) → Hk+1(Zϱ̄, E). Since D0u ∈
Hk

loc(Z,E), by the compactness of Zϱ we obtain that D0v ∈ Hk(Zϱ̄, E). Moreover,
σ−1
0 : Hk(Zϱ̄, E) → Hk(Zϱ̄, E) so we get v0 ∈ Hk+1(Zϱ̄, E).

Fix l ∈ [0, k + 1]. Then,∥∥∥∂lt|A|k+1−lv1

∥∥∥2
L2(Zϱ̄,E)

=
∥∥∥|A|k+1−l∂tv1

∥∥∥2
L2(Zϱ̄,E)

=
∥∥∥|A|k+1−l∂lre

−t|A|(χ+(A)v(0)
)∥∥∥2

L2(Zϱ̄,E)

=
∥∥∥|A|k+1−l|A|le−t|A|

(
χ+(A)v(0)

)∥∥∥2
L2(Zϱ̄,E)

=
∥∥∥|A|k+1e−t|A|

(
χ+(A)v(0)

)∥∥∥2
L2(Zϱ̄,E)

=

∫ ϱ

0

∥∥∥|A|k+1e−t|A|
(
χ+(A)v(0)

)∥∥∥2
L2(∂M,E)

dt

=

∫ ϱ

0

∥∥∥t 12 |A| 12 e−t|A|(|A|k+ 1
2χ+(A)v(0)

)∥∥∥2
L2(∂M,E)

dt

t

≲
∥∥∥|A|k+ 1

2χ+(A)v(0)
∥∥∥2
L2(∂M,E)

'
∥∥χ+(A)v(0)

∥∥2
Hk+1

2 (∂M)
,

where the third equality follows from the repeated differentiation of the semigroup
using the commutativity of ∂t and |A|, and the penultimate inequality from the H∞

functional calculus via Theorem 4.82.

This shows that v1 ∈
⋂k+1
l=0 dom

(
∂lt|A|

k+1−l; [0, %]
)
= Hk+1(Zϱ̄, E). Since v = v0 +

v1 and we have already established that v0 ∈∈ Hk+1(Zϱ̄, E), we obtain that v ∈
Hk+1(Z,E). Also, we have that (1− η) ∈ Hk+1

loc (Z,E) and therefore,

u = (1− η)u+ ηu = (1− η)u+ v ∈ Hk+1
loc (Z,E) .

4.11 The general problem

Let us now return back to the original problem. That is, we considerD : C∞(M,E) →
C∞(M,F ) an elliptic first-order differential operator, acting between two hermitian
bundles (E, hE) and (F, hF ) with (M,µ) a measure manifold with compact bound-
ary equipped with a interior pointing vectorfield T along the boundary ∂M . As
before, we emphasise that only ∂M is assumed to be compact.

Let R > 0 be the constant in the operator reduction Lemma 4.6. Then, we know
that for a fixed boundary adapted operator A, which we assume to be invertible
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ω-bisectorial, there is an open set U containing ∂M with U diffeomorphic to ZR
for which D = σt(∂t + A + Rt) with Rt a smoothly varying family of first-order
differential operators on ∂M of at most order one one for which, given R′ ∈ (0, R),
there exists a constant C ′ <∞ such that

‖Rtu‖L2(∂M,E) ≤ C ′
(
t‖Au‖L2(∂M,E) + ‖u‖L2(∂M,E)

)
whenever u ∈ C∞(∂M,E).

This will be a key ingredient allowing us to reduce boundary value problems for D
to D0. Therefore, from here on, let us fix

R′ =
R

2
.

Let us first highlight the following corollary of the previous theorem.

Corollary 4.115. There is a constant c1 < ∞ such that whenever % < R′ and
u ∈ C∞

c (Zϱ, E) with χ+(A)u(0) = 0 and spt(u) ⊂ Zϱ = [0, %)× ∂M ,

‖u‖2
H1
(
Z
R′,E

) ≤ c21

(
‖(∂t + A)u‖2

L2(Zϱ,E) + ‖u‖2
L2(Zϱ,E)

)
.

Proof. Under the hypothesis of the corollary, we have that χ+(A)(u(0)) = 0 and
χ−(A)(u(%)) = 0. Therefore, on applying Proposition 4.110 II), with ρ = %, we
obtain D0 : H1(Zϱ, E;B0) → L2(Zϱ, F ) is an Banach space isomorphism. The
estimate in the conclusion is precisely a quantification of this fact.

Exercise 4.116. Assuming A is self-adjoint, calculate this directly without utilising
Proposition 4.110.

This immediately gives us the following regularity for the minimal operator.

Corollary 4.117. We have dom(D0,min) ⊂
{
u ∈ H1

loc(M,E)
∣∣∣ u|∂M = 0

}
.

In order to reduce questions regarding D to D0, we need to know that the closures
of D and D0 in a sufficiently small neighbourhood of the boundary yield the same
domains. This ensures that on multiplying a section in dom(Dmax) by an appro-
priate cutoff, we are guaranteed to be in a sufficiently ‘large’ closure of D0 which
is respectively contained in dom(D0,max). For this, we need to use the following
abstract result.
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Lemma 4.118. Let T, S be closable operators on a Banach space B with
dom(S) ⊂ dom(T ). Suppose there exist constants c ∈ [0, 1) and C < ∞ satis-
fying

‖Tu‖ ≤ c‖Su‖+ C‖u‖ .

Then
dom

(
S̄
)
= dom

(
T + S

)
and ‖u‖S ' ‖u‖T+S .

This lemma suggests that we should look for such a bound for our choice of operators
D0 and D.

Lemma 4.119. There is a constant c2 > 0 s.t. for all % ∈ (0, R′) and u ∈
C∞(Zϱ, E) with spt(u) ⊂ [0, %)× ∂M we have

‖D −D0‖L2(Zϱ̄)
≤ c2

(
%‖D0u‖L(Zϱ̄)

+ ‖u‖L2(Zϱ̄)

)
.

Proof. Recall that, using Lemma 4.6, (4.2) yields

D −D0 = (σt − σu)σ
−1
0 D0 + σtRt . (4.11)

Since t 7→ σt is smooth, there is a c̃2 such that whenever t ≤ R′ we have the Lipschitz
estimate

|(σt − σ0)v| ≤ c̃2t|v| .

In particular, if we assume t ≤ %, then

|(σt − σ0)v| ≤ c̃2%|v| .

The first term in (4.11) is then estimated as:∥∥(σt − σ0)σ
−1
0 D0u

∥∥
L2(Zϱ̄,E)

≤ c̃2%
∥∥σ−1

0 D0u
∥∥
L2(Zϱ̄,E)

≤ ˜̃c2%‖D0u‖L2(Zϱ̄,E) ,

where the constant ˜̃
2c contains the norm of σ−1

0 . Now consider consider the second
term in (4.11). We estimate this as

‖σtRtu‖2L2(Zϱ̄,E) ≤ c23

∫ ϱ

0

‖Rtu(t)‖2L(∂M,E) dt

≤ c24

∫ ϱ

0

t2‖Au(t)‖2L2(∂M,E) dt+ c4‖u‖2L2(Zϱ̄,E)

= c24

∫ ϱ

0

‖A(tu(t))‖2L2(∂M,E) dt+ c4‖u‖2L2(Zϱ̄)
,

where the second inequality follows from Lemma 4.6 and the constant c4 contains the
constant arising from the invocation of Lemma 4.6 using R′ as we defined previously.
In particular, this constant is independent of %. Let

v(t) := tu(t) .
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Then spt(v) ⊂ [0, %)×∂M and so in particular, v(0) = 0 which yields χ+(A)(v(0)) =
0. Therefore,∫ ϱ

0

(
‖∂tv(t)‖2L(∂M,E) + ‖Av(t)‖2L2(∂M,E)

)
dt ≤ c20‖v‖

2
H1(Zϱ̄,E)

≤ c21c
2
0

(
‖(∂t + A)v(t)‖2L2(Zϱ̄,E) + ‖u‖2L2(Zϱ̄,E)

)
,

where the first inequality follows from Lemma 4.106 and the second inequality from
Corollary 4.115. Moreover,

(∂t + A)v = (∂t + A)(tu) = u+ t(∂t + A)u

and by using this, we get∫ ∞

0

‖(∂t + A)v‖2L2(∂M,E) dt =

∫ ϱ

0

‖u+ t(∂t + A)u‖2L2(∂M,E) dt

≤ 2
(
‖u‖2L2(Zϱ̄,E) + %2‖(∂t + A)u‖2L2(Zϱ̄,E)

)
≤ c25%

2‖D0u‖2 + 2‖u‖2L2(Zϱ̄,E) .

On combining these estimates, we obtain

‖σtRtu‖2L2(Zϱ̄,E) ≤ (c0c1c4c5)
2%2‖D0u‖2L2(Zϱ,E) + (c20c

2
1 + c24 + 2)‖u‖2L2(Zϱ,E) .

Therefore, we can choose c2 and C2 appropriately to obtain

‖(D −D0)u‖ ≤ c2%‖D0u‖L2(Zϱ̄)
+ C2‖u‖L2(Zϱ̄)

.

Let Dcl and D0,cl be the closures of D and D0 respectively with domain

D := {u ∈ C∞(Zϱ̄, E) | spt(u) ⊂ [0, %)× ∂M} .

Corollary 4.120. Whenever % < R′ further satisfies % < 1
c2

, we have that

dom(Dcl) = dom(D0,cl) and ‖u‖Dcl
' ‖u‖D0,cl

.

Proof. For this choice of %, we have from the Lemma 4.119 that

‖(D −D0)u‖L2(Zϱ̄)
≤ b‖D0u‖+ C2‖u‖ ,i

where b := c2% < c2
1
c2
< 1.

Let T := D −D0 and S := D0 with domain

D = {u ∈ C∞(Zϱ̄, E) | spt(u) ⊂ [0, %)× ∂M} .

It is clear that

S̄ = D0,cl and T + S = (D −D0 +D0)|D = Dcl .

The conclusion then follows from invoking Lemma 4.118 with this choice of T and
S.
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In order to continue, to consider the general case, we need to make the following
additional assumption.

[FO6] D and D† are complete.

That is, domc(D) := {u ∈ dom(Dmax) | spt(u) compact} and domc

(
D†) :={

v ∈ dom
(
D†

max

) ∣∣ spt(v) compact
}

are dense in dom(Dmax) and dom
(
D†

max

)
respectively.

Exercise 4.121. If D is complete, then C∞
c (M,E) is dense in dom(Dmax).

Theorem 4.122. Let D be complete and A an ω-bisectorial invertible adapted
boundary operator for D. Then

Ȟ(D) = ȞA(D0) .

Proof. Choose % > 0 small such that it satisfies the hypothesis of Corollary 4.120
and let Uϱ = Ψ−1([0, ρ)×∂M) where Ψ is the diffeomorphism from Lemma 4.2. This
choice of % is reasonable since in the hypothesis of Corollary 4.120, we automatically
assume that % < R′ < R, where the R is the constant in Lemma 4.2. Let η ∈
C0

c(M, [0, 1]) with spt(η) ⊂ Uϱ.

Now, fix u ∈ C∞(M,E). Then, we write

u = (1− η)u+ ηu =: u0 + u1 .

Clearly, ui ∈ dom(Dmax) and furthermore, u0|∂M = 0. Therefore, u0 ∈ dom(Dmin).

To study u1, we identify Uϱ and Zϱ. Since we assume that D is complete, there
exists a sequence of uj1 ∈ C∞

c (M,E) with uj1 → u1 in dom(Dmax). It is easy to
verify that ηu1j → u1 in dom(Dmax) by the choice of η. Since ηu1j ∈ D we have that
u1 ∈ dom(Dcl). Therefore,

ηu = u1 ∈ dom(Dcl) = dom(D0,cl) ⊂ dom(D0,max) . (4.12)

By invoking Theorem 4.91, we find that u1|∂M ∈ ȞA(D0). Moreover,

u|∂M = (ηu)|∂M = u1|∂M ,

and therefore,∥∥∥u|
∂M

∥∥∥ ≲ ‖ηu‖D0,max
= ‖ηu‖D0,cl

' ‖ηu‖Dcl

≤ ‖u‖L2(Zϱ,E) + ‖σD(·, dη)u‖L2(Zϱ,E) + ‖Dmaxu‖ ≲ ‖u‖Dmax
,

where the first estimate follows from Theorem 4.91, the third from (4.12) together
with Corollary 4.120, and the penultimate inequality from the product rule. This
shows that u 7→ u|∂M : dom(Dmax) → ȞA(D0) is bounded.

It remains to show that this u 7→ u|∂M : dom(Dmax) → ȞA(D0) is a surjection. For
that, define the extension operator Eϱ : ȞA(D0) → dom(D0,max) defined by

Eϱv = ηEv .
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Note, however, that spt Eϱv ⊂ Zϱ = [0, %)× ∂M . Therefore,

Eϱv ∈ dom(D0,cl) = dom(Dcl) ⊂ dom(Dmax)

with the equality following from Corollary 4.120. Furthermore, we also obtain

‖Eϱv‖Dmax
= ‖Eϱv‖Dcl

' ‖Eϱv‖D0,cl
≲ ‖v‖ȞA(D0)

,

Therefore Eϱ : ȞA(D0) → dom(Dmax) is a bounded map. Together with previous
estimate we have that u 7→ u|∂M : dom(Dmax) → ȞA(D0) is a bounded surjection.

This shows that Ȟ(D) = ȞA(D0) with comparable norms.

Remark 4.123. Let us recall our desire [Req 3]:

Describe Ȟ(D), and in particular its topology, from data only living on ∂M .

It is this theorem that allows us to actualise this desire, to the extent that it is
realistically possible. This theorem tells us that, by fixing an invertible bisectorial
adapted boundary operator A, we are able to describe and understand Ȟ(D)
purely in terms of spectral information of A. Indeed, this operator is not only
determined by boundary information, but it has only a nodding acquaintance
with the operator D. It only relies upon the principal symbol of D and therefore,
there are many possible choices for A. This freedom allows us to choose A as
suited to the particular question which we are attempting to answer.

Proposition 4.124. Let u ∈ dom(Dmax) and v ∈ dom
(
D†

max

)
. Then, given any

adapted boundary operator A that is ω-bisectorial and invertible,

〈Dmaxu, v〉L2(M,F ) −
〈
u,D†

maxv
〉
L2(M,E)

= −
〈
u|∂M ,σ

∗
0v|∂M

〉
ȞA(D0)×ĤA(D0)

.

Proof. Since we assume that D and D† are complete, it suffices to consider u ∈
C∞

c (M,E) and v ∈ C∞
c (M,F ). Then, by Green’s formula from Proposition 4.9, we

have that
〈Du, v〉 −

〈
u,D†v

〉
= −

〈
u|∂M ,σ

∗
0v|∂M

〉
L2(∂M,E)

.

Choose η as in the proof of Theorem 4.122. Then,

ηu ∈ dom(Dcl) = dom(D0,cl) ⊂ dom(D0,max) ,

ηv ∈ dom
(
D†

cl

)
= dom

(
D†

0,cl

)
⊂ dom

(
D†

0,max

)
.

Moreover ηu|∂M = u|∂M and ηv|∂M = v|∂M , so by Proposition 4.98,

〈u|∂M ,σ∗
0v|∂M〉L2(∂M,E) = 〈u|∂M ,σ∗

0v|∂M〉ȞA(D0)×ĤA(D0)
.
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Corollary 4.125. If B is a boundary condition for DB, then the adjoint operator
satisfies D∗

B = D†
B†, where

B† :=
{
v|∂M

∣∣∣ v ∈ dom(D∗
B)
}
= (σ∗

0)
−1B⊥,〈ĤA(D0),ȞA(D0)〉 .

Proof. This follows immediately on combining Proposition 4.124 and Proposition 4.99.

4.12 Regularity up to the boundary

Recall again the R arising from the geometric reduction lemma, Lemma 4.2. That
is, UR is diffeomorphic to [0, R) × ∂M satisfying the geometric properties in the
conclusion of this lemma. Further fixing R′ < R from the operator reduction lemma,
Lemma 4.6, say R′ := R

2
, we obtain the following analogous to Lemma 4.119.

Lemma 4.126. For k ∈ N, there exists % < R′ such that

(D − σ0R0) : H
k+1(Zϱ̄, E;B0) → Hk(Zϱ̄, F )

is an isomorphism, where

B0 := χ−(A)H
1
2 ({0} × ∂M,E)× χ+(A)H

1
2 ({%} × ∂M,E) .

With this, we can now prove the following, generalising Theorem 4.113.

Theorem 4.127. We have that

dom(Dmax) ∩ Hk+1
loc (M,E) =

{
u ∈ dom(Dmax)

∣∣∣ Du ∈ Hk
loc(M,E)

and χ+(A)
(
u|
∂M

)
∈ Hk+ 1

2 (∂M,E)
}

.

Proof. The direction ‘⊂’ is clear.

We prove ‘⊃’. Fix k ∈ N and let % be given from Lemma 4.126. Let η ∈ C∞
c (M, [0, 1])

such that spt(η) ⊂ Uϱ ∼= [0, %) × ∂M and η = 1 in Ψ−1
([
0, ϱ

2

)
× ∂M

)
and η =

0 outside Ψ−1
([
0, 3ϱ

4

)
× ∂M

)
. Let u ∈ dom(Dmax) with Du ∈ Hk

loc(M,E) and
χ+(A)

(
u|∂M

)
∈ Hk+ 1

2 (∂M,E). Without loss of generality, by induction, we can
further suppose that u ∈ Hk

loc(M,E).

Since spt(1− η)u ⊂ M \ Uϱ, by interior elliptic regularity, i.e. Theorem 4.112, we
obtain that (1− η)u ∈ Hk+1

loc (M,E).
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It remains to consider v := ηu. Note that v(0) = (ηu)(0) = u|∂M . Therefore,

Dv = σD(πT ∗M(dη), dη)u+ ηDu ∈ Hk(Zϱ, E)

and by hypothesis,

χ+(A)(v(0)) = χ+(A)
(
u|∂M

)
∈ Hk+ 1

2 (∂M,E) .

From construction, we have that v ∈ dom(Dmax) and spt(v) ⊂ Zϱ. Therefore,
v ∈ dom(Dcl) = dom(D0,cl) ⊂ dom(D0,max) and using Proposition 4.110 I), we write

v(t) = S0σ
−1
0 D0v(t) + e−t|A|

(
χ+(A)v(0)

)
=: v0(t) + v1(t) . (4.13)

Since χ+(A)(v(0)) ∈ Hk+ 1
2 (∂M,E), by the exact same calculation in the proof of

Theorem 4.113, we obtain that v1 ∈ Hk+1(Zϱ, E). In fact, from the hypothesis, we
also know regularity information about v. It is the regularity of v0 that is unknown
to us.

We show that v0 ∈ Hk+1(Zϱ, E). First

(D − σ0R0)v0 = (D − σ0R0)v − (D − σ0R0)v1 .

Using that σ0R0 : Hl(Zϱ, E) → Hl(Zϱ, F ) boundedly for each l, Du ∈ Hk
loc(M,E)

implies Dv ∈ Hk(Zϱ, E) and u ∈ Hk
loc(M,E) implies v ∈ Hk(Zϱ, F ), we obtain

(D − σ0R0)v ∈ Hk(Zϱ, F ). Therefore, (D − σ0R0)v0 ∈ Hk(Zϱ, F ). Now, note that
χ−(A)(v0(%)) = 0 and by Lemma 4.126, we have that (D − σ0R0) : H

k+1(Zϱ, E;B0) →
Hk(Zϱ, F ) isomorphically. Therefore, v0 ∈ Hk+1(Zϱ, E).

By (4.13), since v1 ∈ Hk+1(Zϱ, E), we obtain that v ∈ Hk+1(Zϱ, E). Since spt v ⊂ Zϱ,
we have that v ∈ Hk+1

loc (M,E). The conclusion then follows.



5 The Atiyah-Patodi-Singer Index
Theorem

The purpose of this chapter is to give a description of the celebrated index theorem
of Atiyah, Patodi and Singer. It first appeared in the the series of seminal papers
[3, 4, 5, 6] by these three authors.

Throughout this chapter, as in the last, D ∈ Diff1(E,F ) elliptic, where (E, hE) →M
and (F, hF ) →M are hermitian bundles.

5.1 Index and elliptically regular boundary conditions

Let us recall the notion of an elliptically regular boundary condition from Definition
3.75. Applying this to the case when m = 1, we obtain that a boundary condition
B ⊂ Ȟ(D) is elliptically regular if

B ⊂ H
1
2 (∂M,E) and B† ⊂ H

1
2 (∂M,F ) .

Proposition 5.1. Let A be an adapted boundary operator that is invertible bisec-
torial. Then the following are equivalent.

(I) B is an elliptically regular boundary condition.

(II) B is a boundary condition, B ⊂ H
1
2 (∂M,E) and B⊥,〈ĤA(D0),ȞA(D0)〉 ⊂

H
1
2 (∂M,F ).

(III) dom(DB) ⊂ H1
loc(M,E) and dom

(
D†
B†

)
= dom(D∗

B) ⊂ H1
loc(M,F ).

Proof. These equivalences are easily verified. Note that for (II), we use

B† = (σ∗
0)

−1B⊥,〈ĤA(D0),ȞA(D0)〉

from Proposition 4.99 and Theorem 4.122, along with the fact that (σ∗
0)

−1 : Hℓ(∂M,E) →
Hℓ(∂M,F ) is bounded. For (III) simply use previous Theorem 4.127.

Before we consider the Fredholmness properties of such boundary conditions, let us
first present some abstract facts. Recall that a closed operator T : B1 → B2 is said
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to be Fredholm if ran(T ) is closed and kerT and cokerT := B2⧸ranT are both finite
dimensional.

Definition 5.2 (Analytical index). The analytical index of a Fredholm opera-
tor T : B1 → B2 is defined as

ind(DB) := dim(ker(DB))− dim(coker(DB)) ∈ Z .

Remark 5.3. By the closed range theorem (c.f. Chapter 4, Section 5 in [52]), we
have that ran(T ∗) is automatically closed when ran(T ) is closed.

Lemma 5.4. Let T : H → H be a densely-defined closed operator on a Hilbert
space with closed range. Then coker(T ) ∼= ker(T ∗). In particular, if T is Fredholm,

ind(T ) = dim(ker(T ))− dim(ker(T ∗)) .

Proof. From Proposition 4.16 III), we have that H = ker(T ∗)⊕ ran(T ) since ran(T )
is assumed to be closed. Then, clearly

coker(T ) = H⧸ran(T ) ∼= ker(T ∗) .

The following is an important result due to Hörmander, which can be found as
Proposition 19.1.3 in [31].

Lemma 5.5. Suppose we have Banach spaces B1,B2 and L : B1 → B2 a bounded
operator. Then, the following are equivalent:

I) There exists a Banach space B3, a compact map K : B1 → B3, and a constant
c <∞ such that

‖u‖B1
≤ c
(
‖Lu‖B2

+ ‖Ku‖B3

)
.

II) ker(L) is finite dimensional and ran(L) is closed.

With the aid of this lemma, we can assert the following cornerstone result for our
considerations in this chapter.

Proposition 5.6. Suppose M is compact and B is an elliptically regular boundary
condition for D. Then DB is Fredholm.

Proof. We apply Lemma 5.5 on setting B1 := dom(DB), B2 := B3 := L2(M,E),
L := DB and K := id. By Proposition 5.1 (III), we have dom(DB) ⊂ H1

loc(M,E) =
H1(M,E), where the second equality follows since M is compact. Now

‖u‖B1
= ‖u‖DB

' ‖DBu‖L2(M,E) + ‖u‖L2(M,E) ,
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so in particular,
‖u‖B1

≲ ‖DBu‖B2
+ ‖u‖B3

.

Again, due to the compactness of M , the inclusion map H1(M,E) ↪→ L2(M,E)
is compact. Therefore, K = id : dom(DB) ⊂ H1(M,E) → L2(M,E) is compact.
Invoking Lemma 5.5, we conclude that DB has finite dimensional kernel and closed
range.

SinceB is elliptically regular, Proposition 5.1 (III) also guarantees us that dom(D∗
B) ⊂

H1(M,F ). Therefore, we can repeat the same argument for D†
B† in place of DB to

obtain that ker
(
D†
B†

)
is finite dimensional and ran

(
D†
B†

)
is closed.

We have that ran(DB) is closed and that ker(DB) is finite dimensional. By Lemma
5.4 we conclude that coker(DB) ∼= ker(D∗

B) and we have proved that the latter space
is also finite dimensional. Therefore, DB is a Fredholm operator.

Remark 5.7. If we assumed that B was only semi-elliptically regular, i.e. that
B ⊂ H

1
2 (∂M,E) but not necessarily that B† ⊂ H

1
2 (∂M,F ), then the argument in

the proof of Proposition 5.6 holds for DB. That is, we obtain that DB has finite
dimensional kernel and closed range. Now, from Remark 5.3, we automatically
have that ran(D∗

B) is also closed. Moreover, from Lemma 5.4, we still have that
coker(DB) ∼= ker(D∗

B). Therefore, in this setting, the failure for DB to be a
Fredholm operator can only arise from ker(D∗

B) = ker(D†
B†) having an infinite

dimensional kernel. Elliptic regularity for a boundary condition is a symmetric
relation on B and B† and it ensures that both kernels ker(DB) and ker(D∗

B) are
finite dimensional.

5.2 Atiyah-Patodi-Singer boundary conditions

We now consider a very special class of boundary conditions which can be defined
given an adapted boundary operator. To begin with, let us consider a general
adapted boundary operator A. That is, we do not assume it is bisectorial invertible.

However, from Proposition 4.77 I) and II), we know that the spectrum of A is
discrete and that it is contained in a region Sω ∪ BRA

(0) for some ω ∈ [0, π
2
) and

RA ∈ [0,∞). In particular, ıR ∩ spec(A) is just a finite set of points.
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The boundary condition we want to define is the sum of all generalised eigenspaces
with negative real part sitting inside H

1
2 (∂M,E). To do this rigorously, let us first

consider the real part of the spectrum of A.

Lemma 5.8. The real part of the spectrum of A can be written as

Re(spec(A)) = {−∞ < · · · < λ−n < · · · < λ−1 < 0 = λ0 < λ1 < . . .} .

Proof. By the discreteness of the spectrum, we are guaranteed there are no finite
accumulation points. Therefore, the real part of the spectrum must take such a
form.

Note that in the way we have enumerated the set Re spec(A) is without counting for
multiplicity. In fact, we may very well have two points z1, z2 ∈ spec(A) such that
Re z1 = Re z2. However, the important point here is that for all r ∈ (λ−1, 0), we
obtain Ar = A − r is ωr-bisectorial and invertible. The same conclusion holds for
r(0, λ1).

Definition 5.9 (Atiyah-Patodi-Singer (APS) boundary condition). Let
a := 1

2
min{−λ−1, λ1} and define the APS boundary condition for the operator A

to be
BAPS(A) := χ−(Aa)H

1
2 (∂M,E) .

Proposition 5.10. Given an adapted boundary operator A for D, the APS-
boundary condition BAPS(A) is elliptically regular.

Proof. Since Aa is an invertible bisectorial adapted boundary operator, on invoking
Theorem 4.122, we have that Ȟ(D) = ȞAa(D0) with D0 the induced model operator
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from Aa. Moreover,

ȞAa(D0) = χ−(Aa)H
1
2 (∂M,E)⊕ χ+(Aa)H

− 1
2 (∂M,E) = BAPS(A)⊕⊕χ+(Aa)H

− 1
2 (∂M,E) ,

which shows that BAPS(A) is closed in ȞAa(D0) and hence, a boundary condi-
tion. Moreover, by construction BAPS(A) ⊂ H

1
2 (∂M,E) and therefore, it is semi-

elliptically regular.

By Proposition 5.1, it suffices to prove that

BAPS(A)
⊥,〈ĤA0

(D0),ȞAa (D0)〉 ⊂ H
1
2 (∂M,E) .

We compute

BAPS(A)
⊥,〈ĤAa (D0),ȞAa (D0)〉 =

(
χ−(Aa)H

1
2 (∂M,E)

)⊥,H− 1
2 (∂M,E)

∩ ĤAa(D0)

= χ+(A∗
a)H

− 1
2 (∂M,E) ∩

(
χ+(A∗

a)H
1
2 (∂M,E)⊕ χ−(A∗

a)H
− 1

2 (∂M,E)
)

= χ+(A∗
a)H

− 1
2 (∂M,E) ∩ χ+(A∗

a)H
1
2 (∂M,E)

= χ+(A∗
a)H

1
2 (∂M,E) ⊂ H

1
2 (∂M,E) .

Remark 5.11. Given we have the freedom to compute the annihilator with re-
spect to any bisectorial invertible adapted boundary operator, we could have in-
stead BAPS(A)

⊥,〈ĤAr (D0),ȞAr (D0)〉 for some other admissible spectral cut r ∈ R.
For the sake of argument, let us assume that r > a. Then, when we compute the
annihilator, we would have to additionally take care of the subspace

χ−(A∗
r)H

− 1
2 ∩ χ+(A∗

a)H
− 1

2 .

A quick sketch of this situation reveals that this subspace is the sum of generalised
eigenspaces corresponding to finite spectral points. Therefore, this is a finite
dimensional subspace. Moreover, each generalised eigenspace consists of smooth
sections and therefore,

χ+(A∗
r)H

− 1
2 ∩ χ−(A∗

−a
)
H− 1

2 ⊂ C∞(∂M,E) .

Since any two norms are comparable on a finite dimensional vector space, we are
able to write

‖u‖
H− 1

2 (∂M,E)
' ‖u‖

H
1
2 (∂M,E)

for all u ∈ χ+(A∗
r)H

− 1
2 ∩ χ−(A∗

−a
)
H− 1

2 . This remark gives a conceptual basis as
to the reason all subspaces χ−(Ar)H

1
2 (∂M,E) for an arbitrary spectral cut r ∈ R

should be elliptically regular. Clearly, these are the APS conditions BAPS(Ar).

Finally, we end this subsection with the following important consequence of our
considerations here. This corollary allows us to use methods arising from index
theory to understand both boundary value problems and other important structural
aspects of adapted boundary operators.
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Corollary 5.12. Let M be compact and A any adapted boundary operator for D.
Then DBAPS(A) is a Fredholm operator.

5.3 Spectral asymmetry of self-adjoint operators

Let Σ be a compact manifold without boundary, and EΣ → Σ a hermitian bundle
over Σ. We focus our attention now on A ∈ Diff1(EΣ) which is assumed to be
elliptic and formally self-adjoint. Note that since Σ is boundaryless and compact,
we have that A has a unique closure A = Amin = Amax. Therefore, with slight abuse
of notation, throughout, we will identify A and A.

From Theorem 3.38, dom(A) = H1(Σ, EΣ) and since it has a nonempty resolvent, we
have that spec(A) is discrete. Counting the nonzero eigenvalues with multiplicity,
we obtain that

spec(A) = {−∞ < · · · ≤ λ−n ≤ · · · ≤ λ−1 < λ0 = 0

< λ1 ≤ · · · ≤ λn ≤ · · · <∞} ⊂ R .

The fact that A is self-adjoint means that the generalised eigenspaces are, in fact,
eigenspaces. Moreover, EigA(λ) ⊂ C∞(Σ, EΣ) for all λ ∈ spec(A), and they are
finite dimensional.

With this in mind, we define the following important gadget that was first introduced
in the seminar paper [4] by Atiyah-Patodi-Singer.

Definition 5.13 (Eta-function). Given s ∈ C, define

ηA(s) :=
∑

λ∈spec(A)\{0}

sgn(λ)

|λ|s

whenever it exists, where implicitly this sum is understood to be counting multi-
plicities.

While this definition seems like something ad-hoc, it is well motivated by pre-existing
concepts in the literature. Consider

ζ(s) :=
∞∑
i=1

i−s ,

the celebrated Riemann zeta-function. It is an important object in number theory
as well as a number of other areas in mathematics as well as mathematical physics.
It is meromorphic on C and in fact, it is holomorphic on C \ {1} with a simple pole
at s = 1. Let us list some interesting properties of the zeta-function.

1. The heavily popularised expression ‘1+ 2+ 3+ · · · = − 1
12

’ due to Ramanujan
is justified by the fact that ζ(−1) = − 1

12
.
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2. The Riemann hypothesis, which has consequences to the distribution of prime
numbers, is given in terms of the zeta-function. More precisely, the hypothesis
is that the nontrivial zeros of ζ are in 1

2
+ ıR.

For B non-negative self-adjoint and with pure point spectrum, the spectral zeta-
function of B is

ζB(s) :=
∑

λ∈spec(B)\{0}

|λ|−s .

As in the expression for the eta-function, this sum is understood to count multiplic-
ities.

Like their distant cousin the Riemann zeta-function, which is of prominence in num-
ber theory, spectral zeta-functions play an important role in geometry. From the
defining expression, it is easy to see that the eta-function generalises the spectral
zeta-function to general self-adjoint operators, which admit two sided spectrum.
When the spectrum of A is symmetric counting multiplicities, or equivalently when
EigA(λ)

∼= EigA(−λ), it is clear that ηA(s) = 0. Therefore, in the general self-adjoint
operator situation, the eta-function measures a certain ‘spectral asymmetry’. In fact,
in [4] where this was first introduced, the central theme was that of ‘spectral asym-
metry’.

5.3.1 An outline to study eta-functions

Let us the eta-function in the following convenient manner, that separates the sum
into negative and positive spectral parts:

ηA(s) =
∞∑
i=1

λ−si +
∞∑
i=1

λ−s−i .

Since we assume A to be self-adjoint, let us consider the APS boundary condition
in this context. It is easy to see that, as a consequence of the self-adjointness of A,
χ±(A)∗ = χ±(A). Moreover, each eigenspace is also orthogonal and therefore,

BAPS(A) = χ−(Aa)H
1
2 (Σ, E) =

⊥⊕
λ<0

EigA(λ) ∩ H
1
2 (Σ, E) .

Letting E = π∗EΣ, where π : [0,∞) × Σ → Σ is the projection map, we build a
‘model’ operator D0 ∈ Diff1(E) out of A, simply by writing D0 = (∂t + A). The
D†

0 = −∂t+A∗ = −(∂t−A) is then precisely −A. From this, it is clear that σ0 = − id
so that σ∗

0 = − id also. Moreover,

ĤA(D0) = χ−(A)H− 1
2 (Σ, E)⊕ χ+(A)H

1
2 (Σ, E) .

Therefore, from Proposition 4.99,

−B†
APS(A) = (σ∗

0)B
†
APS(A) = B⊥,〈ĤA(D0),ȞA(D0)〉

= χ+(Aa)H
1
2 (Σ, E) =

⊥⊕
λ≥0

EigA(λ) ∩ H
1
2 (∂M,E)
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Since BAPS are precisely the eigenspaces of A associated with negative spectrum,
and −B†

APS are the eigenspaces of A with positive spectrum, it is suggestive that
these boundary conditions ‘encode’ information regarding ηA. This then leads us to
postulate the following approach to the study of ηA.

1. Use the index of an operator to study ηA - consider a compact manifold M ,
with ∂M = Σ, along with an operator D which in a neighbourhood of the
boundary takes the form D = σ0(∂t + A). We have seen from Corollary 5.12
that DBAPS(A) is now Fredholm operator so this operator has a well-defined
index.

2. Prove an ‘index formula’ which connects the index of DBAPS(A) to ηA.

To explore this approach further, it is useful to recall the following class of operators.

Definition 5.14. Let S ∈ B(H). Then S is said to be trace class if for an
orthonormal basis (ek) for the Hilbert space H,

tr(S) :=
∑
k

〈Sek, ek〉 <∞ .

Remark 5.15. The trace is independent of basis. However, in application, it is
worthwhile to use a basis arising from the spectral theory associated to S in some
meaningful way.

Remark 5.16. The trace of an operator already allows us to see the eta-invariant
from an operator theoretic point of view. Since Σ is compact, by using Lemma 5.5,
we obtain that A is Fredholm. By the self-adjointness of A, we have that
L2(Σ, E) = ker(A) ⊕⊥ ran(A). We know that A|ran(A) : ran(A) → ran(A) is
unbounded self-adjoint. Moreover, since the eigenspaces of A are orthogonal, we
have that spec

(
A|ran(A)

)
= spec(A) \ {0}. In particular,

∣∣∣A|ran(A)∣∣∣ is invertible,

and
∣∣∣A|ran(A)∣∣∣−s exists at least for non-negative real values of s. Putting together

these facts, we obtain that

ηA(s) = tr

(∣∣∣A|ran(A)∣∣∣−s sgn(A|ran(A))) .

The reason we introduce the notion of trace is to afford us with a larger class of
operators to ‘access’ the index. More precisely, want want to access ηA via a trace
of a combination of ‘heat kernels’.

Let T ∈ C (H) densely-defined and suppose that T ∗T and TT ∗ have discrete spec-
trum with finite dimensional eigenspaces, e.g. for T ∗T, TT ∗ compact.

Clearly T ∗T and TT ∗ are non-negative self-adjoint.
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Lemma 5.17. Let T ∈ C (H) be densely-defined. Then, T ∗T and TT ∗ are non-
negative self-adjoint and

ker(T ) = ker(T ∗T )

Proof. We know that T ∗ is also densely-defined from Proposition 4.16. Consider the
operator T : H⊕H → H⊕H.

T̃ =

(
0 T ∗

T 0

)
,

with domain dom(T̃ ) = dom(T ) ⊕ dom(T ∗). It is easy to see that T̃ is self-adjoint
operator, and so in particular, it is 0-bisectorial and has an H∞-functional calculus.
Therefore, ∣∣∣T̃ ∣∣∣ = T̃ sgn(T̃ )

exists and it is densely-defined non-negative self-adjoint operator with the same
domain as dom(T̃ ). In particular, it is 0-sectorial. By application of Proposition
4.61, we obtain that ∩∞

j=1 dom(|T |j) is a dense subspace of H⊕H. Therefore,

T 2 =

(
T ∗T 0
0 TT ∗

)
.

is densely-defined and easily verified to be non-negative self-adjoint. By projecting
off the components, we have that T ∗T and TT ∗ are both non-negative self-adjoint.

Now, to prove that ker(T ) = ker(T ∗T ), we first note the trivial direction ker(T ) ⊂
ker(T ∗T ). We prove the reverse containment. Let u ∈ ker(T ∗T ). Then v :=
Tu ∈ ker(T ∗). From Proposition 4.16 III), we have H = ker(T ∗) ⊕⊥ ker(T ). Since
v ∈ ran(T ) ∩ ker(T ∗) = 0, so u ∈ ker(T ).

Lemma 5.18. Let T ∈ C (H) be densely-defined and suppose that T ∗T and TT ∗

have discrete spectrum with finite dimensional eigenspaces. Then,

λ ∈ spec(T ∗T ) \ {0} ⇔ λ ∈ spec(TT ∗) \ {0}

and EigT ∗T (λ)
∼= EigTT ∗(λ).

Proof. Let λ ∈ spec(T ∗T ) \ {0}. Then there is a ϕ ∈ dom(T ∗T ) satisfying T ∗Tϕ =
λϕ ∈ dom(T ∗T ) ⊂ dom(T ). So

TT ∗Tϕ = (TT ∗)(Tϕ) = λ(Tϕ) .

Therefore, λ ∈ spec(TT ∗) \ {0}. Since by Lemma 5.17 we have that ker(T ∗T ) =
ker(T ), the map

ϕ 7→ Tϕ : EigT ∗T (λ) → EigTT ∗(λ)

is an injection.

Now suppose ψ ∈ EigTT ∗(λ). Then TT ∗ψ = λψ ∈ dom(T ∗) and T ∗T (T ∗ψ) = λT ∗ψ.
This means we can act on this by T ∗ and on doing so, we obtain T ∗ψ ∈ EigT ∗T (λ).
Therefore ϕ 7→ Tϕ is a bijection and by linearity, it is an isomorphism.
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Proposition 5.19. Let T ∈ C (H) with T ∗T and TT ∗ discrete with finite dimen-
sional eigenspaces and suppose that f ∈ Cb([0,∞]). Then, f(TT ∗) is trace class
iff f(T ∗T ) is trace class and in that case

f(0) ind(T ) = tr(f(T ∗T ))− tr(f(TT ∗)) .

Proof. First, write

tr(f(T ∗T )) =
∑

λ∈spec(T ∗T )

f(λ) = f(0) dim(ker(T ∗T )) +
∑
λ>0

f(λ) ,

tr(f(TT ∗)) =
∑

µ∈spec(TT ∗)

f(µ) = f(0) dim(ker(TT ∗)) +
∑
µ>0

f(µ) ,

allowing these sums to take the value ∞ if the trace is nonexistent. From Lemma 5.18,
fixing N ∈ N, ∑

0<λ<N

f(λ) =
∑

0<µ<N

f(µ) .

Therefore, the limit N → ∞ exists for one if and only if it exists for the other
sum. Moreover, we assume that EigT ∗T (λ) and EigTT ∗(λ) are finite dimensional,
dim(ker(T ∗T )) + dim(ker(TT ∗)) < ∞. This shows the assertion that f(T ∗T ) is
trace class if and only if f(TT ∗) is trace class.

Now, suppose that these are trace class. Then,

tr(f(T ∗T ))− tr(f(TT ∗)) = f(0)(dim(ker(T ∗T ))− dim(ker(TT ∗)))

= f(0)(dim(ker(T ))− dim(ker(T ∗)))

= f(0) ind(T ) ,

where the second equality follows from Lemma 5.17.

Remark 5.20. This proposition affords us with a huge amount of freedom in or-
der to compute the index of an operator, up to a constant multiple. We begin with
an operator T with the only assumption that is Fredholm. However, the spectral
theory of this operator is completely unknown to us. Now, via this proposition,
we can instead move to ‘second order’ non-negative self-adjoint operators, T ∗T
and TT ∗, built out of this operator. There are many functions in f ∈ Cb([0,∞]).
Given T , we simply need to find a good class of such functions so that either
f(T ∗T ) or f(TT ∗) can be verified to be trace class. With this alone, we can now
access the index of the operator up to an identifiable multiple of ind(T ), namely
f(0).

Now we have some extra tools available to us. Letting DAPS = DBAPS(A), with
the choice of T = DAPS, we are lead to the operators D∗

APSDAPS and DAPSD
∗
APS via

Proposition 5.19. Given the success of ‘heat equations’ in the boundaryless situation
for index theorems, we hope for the following.
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(I) Clearly the spectrum of D∗
APSDAPS and DAPSD

∗
APS are discrete with finite

dimensional eigenspaces since, dom(D∗
APSDAPS) ⊂ dom(DAPS) ⊂ H1(∂M,E)

and dom(DAPSD
∗
APS) ⊂ dom(D∗

APS) ⊂ H1(∂M,F ), and these latter spaces em-
bed compactly into L2(∂M,E) and L2(∂M,F ) respectively. Since D∗

APSDAPS

and DAPSD
∗
APS are both self-adjoint, there is a nonempty resolvent set, and

therefore, we obtain a compact resolvent.

(II) Moreover, the heat semigroup e−τD
∗
APSDAPS , which exists because D∗

APSDAPS is
non-negative self-adjoint. What we hope for is that this is is trace class for
τ > 0. Then by Proposition 5.19, e−τDAPSD

∗
APS trace class and

ind(DAPS) = tr
(
e−τD

∗
APSDAPS

)
− tr

(
e−τDAPSD

∗
APS
)

.

(III) Guided by the boundaryless index theorem, we hope that in the analysis,

tr
(
e−τD

∗
APSDAPS

)
− tr

(
e−τDAPSD

∗
APS
)

is able to ‘see’ ηA through an appropriate asymptotic expansion near some
τ0 ∈ [0,∞]. As in the boundaryless case, we need to understand the Schwartz
kernel, sometimes simply (and confusingly) called the kernel associated this
object.

5.4 Schwartz kernels of operators

For manifolds M,N let π1 : M × N → M and π2 : M × N → N be the canonical
projections.

Definition 5.21 (Outer tensor product). The outer tensor product of the
vector bundles E →M and F → N is

E ⊠ F := π∗
1E ⊗ π∗

2F .

It is clear that the fibres (E ⊠ F )(x,y) = Ex ⊗ Ey.

An important theorem in the theory of Schwartz kernels is that there is a bijection
D′(M ×N,E ⊠ F ) → B(D(M,E),D′(M,E)). This is the famous Schwartz kernel
theorem, but we shall not require its full force and therefore, we will only mention
it in passing. The objects in D′(M ×N,E ⊠ F ) are precisely the Schwartz kernels.

We describe the kernels directly through an integral, which mirrors the situation
of the scalar valued case. Let K ∈ MeasSect(M ×M,E∗ ⊠ E). The associated
operator to K is

(TKu)(x) :=

∫
M

K(x′, x)u(x′) dµ(x′) .
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Let (ϕλ) be an orthonormal basis for L2(M,E). Then, for u ∈ L2(M,E), we have
the Fourier expansion u(x) =

∑
λ u

λϕλ(x). Further suppose that

(TKu) ∈ B
(
L2(M,E)

)
.

Then, we expand the kernel also in the Fourier basis to obtain

K(x′, x) = Kλϕλ(x
′)
∗ ⊗ ϕλ(x) ,

where ϕλ(x′)∗[u(x′)] := hEx′(u(x
′), ϕλ(x)).

Therefore,

(TKu)(x) =

∫
KλhEx′(u(x

′), ϕλ(x
′))ϕλ(x) dµ(x

′)

= Kλ〈u, ϕλ〉L2(M,E)ϕλ(x)

= Kλuλϕλ(x) .

Now, let us consider the situation when TK is a trace class operator. Using this
basis (ϕλ) to compute the trace, we obtain

tr(TK) =
∑
λ

〈TKϕλ, ϕλ〉

=
∑
λ

〈∫
K(x, y)ϕλ(y) dµ(y), ϕλ

〉
=
∑
λ

〈∫
Kωϕω(y)

∗[ϕλ(y)] dµ(y)ϕω, ϕλ

〉
=
∑
λ

〈
Kω

(∫
h(ϕω(y)), ϕλ(y) dµ(y)

)
ϕλ, ϕλ

〉
=
∑
λ

∫
Kλ|ϕλ(y)|2h(y) dµ(y)〈ϕλ, ϕλ〉︸ ︷︷ ︸

=1

=
∑
λ

Kλ .

Let us now compare this with the trace of the Schwartz kernel. Since K(x, y) =
Kλϕλ(y)

∗ ⊗ ϕλ(x), we have

tr(K(x, x)) = Kλ tr(ϕλ(x)
∗ ⊗ ϕλ(x)) = Kλϕλ(x)

∗[ϕλ(x)] = Kλ|ϕλ(x)|2hx .

Integrating this expression, we find∫
M

tr(K(x, x)) dµ(x) =

∫
Kλ|ϕλ(x)|2 dµ(x) =

∑
λ

Kλ = tr(TK) .

Therefore,
trTK =

∫
M

trK(x, x) dµ(x) .
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To conclude this section, we remark that we typically consider a family of operators
which are trace class. Then, the kernels themselves are parametrised via some
auxiliary manifold P . That is P 3 p 7→ K(p, ·, ·) ∈ MeasSect(M ×M,E∗ ⊠ E). A
Fourier expansion then is of the form

K(p, x, x′) = Kλ(p)ϕλ(x
′)∗ ⊗ ϕλ(x) .

We will see that for a heat kernel, P = (0,∞) and we consider

(0,∞) 3 τ 7→ e−τDu =

∫
M

Kλ(τ, x′, x)u(x′) dµ(x′) .

5.5 Analysis in the cylinder

Let (Σ, ν) be a compact measured manifold without boundary. Fix a self-adjoint
A ∈ Diff1(Σ, EΣ). Let E = π∗EΣ where π : Z = [0,∞) × Σ → Σ and the induced
density on Z is µ = |dt| ⊗ |ν|.

In order to analyse ηA, we analyse the model operator D0 = (∂t + A). Indeed,
contrary to our earlier discussion, this is not a compact space. However, the structure
of the infinite cylinder presents advantages to an initial analysis, much like the way
in which the analysis of the model problem in Section 4.9 allowed us to understand
the general problem in Section 4.11. Later, we will localise to a precompact region
of the cylinder.

We have already seen that

BAPS(A) =
⊥⊕
λ<0

EigA(λ) ∩ H
1
2 (Σ, E)

−B†
APS(A) =

⊥⊕
λ≥0

EigA(λ) ∩ H
1
2 (Σ, E)

Let D0,APS = D0,BAPS(A) and define the Laplacians

∆1 := D∗
0,APSD0,APS and ∆2 := D0,APSD

∗
0,APS .

In the analysis to follow, we study

tr
(
e−τ∆1 − e−τ∆2

)
and connect this to ηA. For that, we analyse ∆1 and ∆2 and their related heat
equations. The following result, readily verified, is key to the analysis.

Lemma 5.22. The spaces L2([0,∞),L2(Σ, EΣ)) = L2(Z,E) and whenever u ∈
L2(Z,E),

u(t, x) =
∑

λ∈spec(A)

uλ(t)ϕλ(x) .
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5.5.1 Analysis of the heat equations

First, let us consider heat equation with respect to the Laplacian ∆1. Since D†
APS =

−(∂t + A), the map ∆1 acts as

∆1 = (−∂t + A)(∂t + A) = −∂2t − ∂tA+ A∂t + A2 = −∂2t + A2.

The domain of this operator is precisely

dom(∆1) =
{
u ∈ dom((D†

0D0)max)
∣∣∣ u ∈ dom(D0,APS)

and D0,APSu ∈ dom
(
D∗

0,APS

)}
.

We reduce our analysis to eigensections. For that, we use Lemma 5.22 to understand
u ∈ dom(∆1) in terms of a condition on its Fourier coefficients. So for that, write
u(t) =

∑
λ u

λ(t)ϕλ ∈ dom(∆1). Then

u ∈ dom(D0,APS) ⇔ ∀λ ≥ 0: uλ(0) = 0 .

Also, note that

(D0,APSu)(t) = (∂t + A)

[∑
λ

uλ(t)ϕλ

]
=
∑
λ

(∂t + λ)(uλ(t)ϕλ) .

Therefore,

D0,APSu ∈ dom((D0,APS)
∗) ⇔ ∀λ < 0: (∂t + λ)uλ = 0 .

Via Fourier decomposition, the domain dom(∆1) is described precisely to be

dom(∆1) =
{
u ∈ dom

((
D†D

)
max

) ∣∣ uλ = 0 if λ ≥ 0 and (∂t + λ)uλ = 0 if λ < 0
}

.

Consider the heat equation

(∂τ +∆1)u = 0 with u(0) = u0 .

Note here that τ is our variable for ‘time’ and t is the transversal variable in the
cylinder, which leads us away from the boundary Σ to the interior.
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The heat operator then takes the form

0 = (∂τ +∆1)u(τ, t, x) =
∑
λ

((
∂τ − ∂2t + λ2

)
uλ(τ, t)

)
ϕλ(x)

which is equivalent to requiring

0 =
(
∂τ − ∂2t + λ2

)
uλ(τ, t) and uλ(0, ·) = uλ,0(·)

for all λ ∈ spec(A). If u(τ, t, x) =
∑

λ u(τ, t, x) solves heat equation 0 = (∂t + A)u,
then:

I) u(τ, ·) ∈ dom(∆1) for all τ > 0,

II) uλ(τ, ·) = 0 for all τ > 0 and λ ≥ 0,

III) (∂t + λ)uλ(τ, t)|t=0 = 0 for all τ > 0 and λ < 0.

That is, through the Fourier expansion, we have reduced our analysis to analysis of
ODEs on R.

We do not explicitly solve for the Schwartz kernels of these equations as they are
classical and well-known. However, we present them here so that they can be verified
to be the correct objects.

Fix λ ∈ R and let

K̃λ
1 (τ, t, t

′) :=
e−λ

2τ

√
4πτ

(
e−

(t−t′)2

4τ − e−
(t−t′)2

4τ

)
.

Recalling the complementary error function

erfc(s) :=
2√
π

∫ ∞

s

e−ξ
2

dξ ,
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define

Kλ
1 (τ, t, t

′) :=

{
K̃λ

1 (τ, t, t
′) if λ ≥ 0 ,

K̃−λ
1 (τ, t, t′) + λe−λ(t+t

′) erfc
(
t+t′

2
√
τ
− λ

√
τ
)

if λ < 0 ,
i

The Schwartz kernel or heat kernel for e−τ∆1 is then readily verified to be

K1(τ, t, x, t
′, x′) =

∑
λ

Kλ
1 (τ, t, t

′)ϕλ(x
′)
∗ ⊗ ϕλ(x) . (5.1)

Next, we consider the heat equation of ∆2. This is u ∈ L2((0,∞), dom(∆2)) which
satisfies (∂τ +∆2) with u(τ, t) = 0. This time, we find that

dom(∆2) =
{
u ∈ dom((D0D

†)max)
∣∣∣ uλ(τ, 0) = 0 if λ < 0

and (−∂t + λ)uλ(τ, t)|t=0
= 0 if λ ≥ 0

}
Define

Kλ
2 :=

{
K̃λ

1 (τ, t, t
′) if λ < 0 ,

K̃λ
1 (τ, t, t

′)− λeλ(t+t
′) erfc

(
t+t′

2
√
τ
+ λ

√
τ
)

if λ ≥ 0 .

Note that Kλ
2 = K−λ

1 (τ, t, t′) for λ ≥ 0. Then, the heat kernel for the heat equation
corresponding to ∆2 is given by

K2(τ, t, x, t
′, x′) :=

∑
λ

Kλ
2 (τ, t, t

′)ϕλ(x
′)
∗ ⊗ ϕλ(x) . (5.2)

Proposition 5.23. For τ sufficiently small (as τ → 0 asymptotically), there is a
c <∞ s.t. for all (t, x), (t′, x′) ∈ Z = [0,∞)× Σ,

|Ki(τ, t, x, t
′, x′)| ≤ cτ−

1
2
(n+1)e−

(t−t′)2

4τ ,

where n = dim(Σ). In particular, Ki(τ, t, x, t
′, x′) → 0 exponentially as τ → 0 as

long as t 6= t′.

Proof sketch. Since ∫ ∞

x

e−ξ
2

dξ < e−x
2 ,

we obtain the estimate

∣∣Kλ
i (τ, t, t

′)
∣∣ < (e−

λ2

τ

√
πτ

+
2|λ|e−λ2

τ

√
π

)
e−

(t−τ ′)2

4τ .

Then

|Ki(τ, t, , x, t
′, x′)| ≤ 3

2
√
πτ

(∑
λ

e−
λ2τ
2

(
|ϕλ(x)|2 + |ϕλ(x)|2

))
e−

(t−t′)2

4τ .
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Letting K(τ, x, y) be the heat kernel for e−τA
2 on Σ, we note that

tr
(
K
(τ
2
, x, x

))
=
∑
λ

e−
λ2τ
2 |ϕλ(x)|2 .

Since Σ is compact without boundary, and A2 ∈ Diff2(EΣ) is self-adjoint (in partic-
ular domain H2), we have asymptotically as τ → 0

tr(K(τ, x, x)) ≲ τ−
n
2 .

These estimates are contained in the paper [1] and its erratum [2] due to Atiyah-
Bott-Patodi. The conclusion then follows.

This proposition says that, off the diagonal (t, t′) ∈ R+ × R+, the contribution is
asymptotically small. In any case, since we are interested in

tr(e−τ∆1 − e−τ∆2) ,

we are required to understand the differences of the kernels on the diagonal t = t′.
Therefore,

K∆1,∆2 := K1 −K2

and define
K(τ, t, x) := tr(K∆1,∆1(τ, t, x, t, x)) .

To assist us in the calculations to follow, define

sgn(s) =

{
sgn(s) s 6= 0,

1 s = 0 .

Through simplifying the expression for K(τ, t, x) using (5.1) and (5.2), we find

K(τ, t, x) =
∑
λ

sgn(λ)

(
−e−λ

2τe−
t2

τ

√
πt

+ |λ|e2|λ|t erfc
(

t√
τ
+ |λ|

√
t

))
|ϕλ(x)|2

=
∑
λ

sgn(λ)
d

dt

(
1

2
e2|λ|t erfc

(
t√
τ
+ |λ|

√
τ

))
|ϕλ(x)|2 .

Integrating in (t, x) yields

K(τ) :=

∫ ∞

0

∫
Σ

K(τ, t, x) dν(x) dt = −
∑
λ

sgn(λ)

2
erfc
(
|λ|

√
τ
)

.

Therefore
K ′(τ) =

1√
4πτ

∑
λ

λe−λ
2τ . (5.3)

Now note that erfc(0) = 1, and since we sum over λ counting multiplicities,

K(τ) = −dim(ker(A))

2
+
∑
λ ̸=0

sgn(λ) erfc
(
|λ|

√
τ
)

.
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Let us now define
h := dimker(A) .

Since
erfc(s) <

2√
π
e−s

2 ,

we obtain

I) K(τ) → −1
2
h as τ → ∞,

II)
∣∣K(τ) + 1

2
h
∣∣ ≤ 1√

π

∑
λ ̸=0 e

−λ2τ as τ → ∞, and

III) |K(τ)| ≤ cτ−
1
2
n as τ → 0 where n = dim(Σ).

These facts then imply that∫ ∞

0

(
K(τ) +

1

2
h

)
τ s−1 dτ <∞

for s ∈ C with Re(s) sufficiently large.

Using integration by parts and using equation 5.3, we obtain∫ ∞

0

(
K(τ) +

1

2
h

)
τ s−1 dτ = −

Γ
(
s+ 1

2

)
2s
√
π

∑
λ ̸=0

sgn(λ)

|λ|2s
= −

Γ
(
s+ 1

2

)
2s
√
π

ηA(2s) .

Here, Γ : C \ (−N) → C is the famous Gamma function, famously satisfying k! =
Γ(k + 1), defined as

Γ(z) =

∫ ∞

0

sz−1e−s ds

when Re z > 0 and analytically continued to C \ (−N).

5.6 The index formula

As we have already stated in Corollary 5.12, when the underlying manifold M is
compact and D ∈ Diff1(E,F ) elliptic, for any given adapted boundary operator
A, DBAPS(A) is Fredholm. Therefore, to prove an index formula, it is reasonable to
restrict our attention to compact M .

Indeed, throughout this section, we assume that M is compact with boundary ∂M =
Σ, carrying a density µ. Let

(
E, hE

)
,
(
F, hF

)
→M be Hermitian vector bundles and

D ∈ Diff1(E,F ) elliptic. To utilise our analysis in Section 5.5, we further assume
the following: Uϱ is a diffeomorphic to Zϱ = [0, %)× Σ such that

D = σ0(∂t + A)

inside Uϱ with A self-adjoint. Moreover, we assume that inside Uϱ, the density
µ = |dt| ⊗ ν, where ν is the induced density from µ with respect to the vectorfield
∂t on ∂M .



5.6 The index formula 155

Let DA = ∂t + A. Note that this is not the model operator D0 with respect to A,
which is D0 = σ0(∂t + A). From Theorem 4.122, we know Ȟ(D) = Ȟ(DA), where
we write DA = ∂t + A on the cylinder Z. Define

DAPS = Dmax|dom(DAPS)

with domain

dom(DAPS) =
{
u ∈ dom(Dmax)

∣∣∣ u|
Σ
∈ BAPS(A)

}
=
{
u ∈ dom(Dmax)

∣∣∣ u|
Σ
∈ χ+(Aa)H

− 1
2 (Σ, E)

}
,

where we chose a = 1
2
min{−λ−1, λ1} in Definition 5.9. As aforementioned, by

Proposition 5.10. and Corollary 5.12, we know that BAPS(A) is elliptically regular
and hence DAPS is Fredholm. Moreover, we have the following.

Lemma 5.24. The operators e−τL1 and e−τL2 are trace class for τ > 0.

As in the analysis of the model operator DA = ∂t + A in Section 5.5 (which was
D0 there), where we considered the Laplacians ∆1 and ∆2, let us now define the
associated Laplacians for DAPS:

L1 := D∗
APSDAPS and L2 := DAPSD

∗
APS .

Since ind(DAPS) ∈ Z, by Lemma 5.24, we obtain

ind(DAPS) = dim(ker(DAPS))− dim(ker(D∗
APS))

= dim(ker(D∗
APSDAPS))− dim(ker(DAPSD

∗
APS))

= tr
(
e−τL1

)
− tr

(
e−τL2

)
.

Given our particular geometric setup, let us briefly consider what can be expected.

1. Near the boundary, appropriately localising to inside Uρ, given that it is dif-
feomorphic to Zρ, we anticipate that there are no ‘curvature’ contributions to
the index, but only boundary contributions.

2. Away from the boundary, outside of Uρ, the manifold might have geometry.
We know from the boundaryless index theorem that it is precisely understood
in terms of the geometry.

Moving forwards, we need to capture these two aspects. We anticipate that the first
aspect to be captured in the analysis we did in Section 5.5.

To capture the second feature, lead by the fact that the cylindrical end near the
boundary should not geometrically contribute to the index, we let M̃ :=M∪Σ(−M),
the double of M . Conceptually, this is the smooth manifold obtained by gluing two
copies of M along the boundary. Formally,

M̃ =M × {0, 1}⧸∼
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where (x, 0) ∼ (x, 1) for all x ∈ ∂M .

The bundles E and F double to Ẽ and F̃ as expected, and since the manifold is
product near the boundary, and the operator near the boundary is D = σ0(∂t+A),
the operator doubles to an operator

D̃ ∈ Diff1

(
Ẽ, F̃

)
which is elliptic. Note that the fact that the operator is product near the boundary
is important to assert that D̃ has smooth coefficients.

Again from before, we know that D̃ has a unique closure, i.e. D̃min = D̃max since M̃
is compact with ∂M̃ = 0. We will from now on write D̃ in place of D̃.

Define
L̃1 := D̃∗D̃ and L̃2 = D̃D̃∗ .

Since the manifold M̃ is now a compact manifold without boundary, ind(D̃) ∈ Z
and e−τL̃1 and e−τL̃2 are trace class operators. Therefore,

ind(D̃) = tr
(
e−τL̃1 − e−τL̃2

)
.

It is here that we expect to find a geometric contribution to ind(DAPS).

By e1, e2, ẽ1, ẽ2, denote the the heat kernels of e−τL1 , e−τL2 , e−τL̃1 , e−τL̃2 respectively.
Let

KAPS(τ, y) := tr(e1 − e2)(τ, y, y) and K̃(τ, y) := tr(ẽ1 − ẽ2)(τ, y, y) .

Now let ξ1, ξ2 ∈ C∞
c ([0,∞), [0, 1]) with

ξ1(t) :=

{
1 if t ∈

[
0, ϱ

2

)
,

0 if t ∈
[
3
4
,∞
)

,
and ξ2 := 1− ξ1 .

Since we are analysing the index via trace class operators, we are particularly in-
terested in understanding the behaviour of these traces as τ → 0. To facilitate
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the analysis, it is useful to understand asymptotic equivalence as well as asymptotic
expansions of the heat kernels associated to these objects. For that reason, let us
recall the following standard notions.

Notation 5.25 (Little-o and Big-O). Let f be a complex valued function and
g real-valued and positive.

1. We say that f(s) = o(g(s)) as x→ L if given ε > 0, there exists δ > 0 such
that

|f(s)| ≤ εg(s)

for all |x− L| < δ. For the limit L = ∞, we say that there exists an N > 0
such that for all x ≥ N , this inequality holds.

2. We say that f(s) = O(g(s)) as x→ L if there exists M and δ such that for
all x satisfying |x− L| < δ,

|f(s)| ≤Mg(s) .

Notation 5.26 (Asymptotic equivalence and expansions). 1. For two
functions f and g, we say

f(s) ∼ g(s) as s→ L

if f(x) = g(x)(1 + o(1)) as x→ L.

2. We say
f(s) ∼

∑
j

ajϕj(s) as s→ L

if ϕj+1(s) ∈ o(ϕj(s)) as s→ L and

f(s)−
j−1∑
k=0

ajϕj(s) = O(ϕj(s)) as s→ L,

or

f(s)−
j−1∑
k=0

ajϕj(s) = o(ϕj−1(s)) as s→ L.

for all j ∈ N. The convergence of
∑

j ajϕj(s) is to be understood as con-
verging for a fixed j in the limit s→ L.
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Armed with this notation, we obtain as τ → 0

ind(DAPS) = tr
(
e−τL1 − e−τL2

)
∼
∫ 1

0

∫
∂M

KAPS(τ, t, x)η1(t) dν(x) dt+

∫
M̃

K̃(τ, y)η2(t) dµ̃(y)

∼
∫ 1

0

∫
∂M

K(τ, t, x)η1(t) dν(x) dt+

∫
M

K̃(τ, y) dµ(y)

∼
∫ ∞

0

∫
∂M

K(τ, t, x) dν(x) dt+

∫
M

K̃(τ, y) dµ(y) ,

where K(τ, t, x) = tr(K1(τ, t, x, t, x)−K2(τ, t, x, t, x)), where Ki is the heat kernel
for e−τ∆i from analysis on the cylinder Z = [0,∞)× ∂M .

From the heat kernel proof of the Atiyah-Singer index theorem on closed manifolds
for elliptic first-order operators, we find

K̃(τ, y) ∼
∑
k≥−n

αk(y)τ
1
2
k

for some αn ∈ C∞. Recalling that

K(τ) =

∫ ∞

0

∫
∂M

K(τ, t, x) dν(x) dt ,

we obtain
ind(DAPS) ∼ K(τ) +

∫
K̃(τ, y) dµ(y) .

Rearranging this expression, we obtain

K(τ) ∼ ind(DAPS)−
∑
k≥−n

τ
1
2
k

∫
M

αk(x) dµ(x) .

Recall in that in subsection 5.5.1, we deduced the expression∫ ∞

0

(
K(τ) +

1

2
h

)
τ s−1 dτ =

−Γ
(
s+ 1

2

)
2s
√
π

ηA(2s) .

Therefore,

ηA(2s) =
−2s

√
π

Γ
(
s+ 1

2

)( 1
2
h + ind(DAPS)

s
−

N∑
k=−n

∫
M

αk(x)
1
2
k + s

dµ(x) + ϑN(s)

)
,

where ϑN is a function that is holomorphic on
{
s ∈ C

∣∣ Re(s) > −N+1
2

}
. Then, by

complex analysis, the function ηA is meromorphic on C, and takes a finite value at
s = 0, given by the expression.

ηA(0) = 2

∫
M

α0(x) dµ(x)− h + 2 ind(DAPS) .

This yields the following celebrated and remarkable theorem of Atiyah, Patodi, and
Singer [APS4, 3, 4, 5, 6].
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Theorem 5.27 (Atiyah-Patodi-Singer). Let (M,µ) be a compact measured
manifold with boundary and D ∈ Diff1(E,F ) such that in a neighbourhood
Uϱ ∼= [0, %)× ∂M = Zϱ,

D = σ0(∂t + A)

where A is a self-adjoint adapted boundary operator and dµ = |dt| ⊗ dν. Let
DAPS = DBAPS(A) where

BAPS(A) =
∑
λ<0

EigA(λ) ∩ H
1
2 (∂M,E) .

The operator DAPS is elliptically regular, hence Fredholm, and

ind(DAPS) =

∫
M

α0 dµ− dimker(A) + ηA(0)

2
.

In this expression, α0 is the coefficient of the τ 0-term in the asymptotic expansion
as τ → 0 of the kernel of

tr
(
e−τD̃

∗D̃ − e−τD̃D̃
∗
)

, (5.4)

where D̃ is the operator double on M̃ , the double of the manifold. The function

ηA(s) =
∑

λ∈spec(A)\{0}

|λ|−s sgn(λ)

converges absolutely for Re(s) large, is meromorphic on all of C, and is finite at
s = 0. Moreover, if the asymptotic expansion in (5.4) has no negative power, then
ηA is holomorphic on

{
s ∈ C

∣∣ Re(s) > −1
2

}
.

Remark 5.28. The assumption that D = σ0(∂t + A) in a neighbourhood of ∂M
can be dropped. However, this introduces an additional term on the right, called
the transgression term. In particular, this measures the way in which the bound-
ary ∂M is embedded into M through its dependency on the second fundamental
form. However, the presentation of this theorem requires greater technicalities.
It also hides the conceptual nature of this theorem, particular its proof where, as
aforementioned, the doubled operator on the doubled manifold accounts for the
geometric term, and the cylindricality of the operator near the boundary accounts
for the eta function.

5.7 Dirac-Type operators

We have discussed the APS theorem in the abstract, under the hypothesis that the
operator and measure are both product near the boundary. In this section, we show
that these hypotheses are geometrically natural by demonstrating a large class of
operators for which these assumptions are valid.
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From here on, let us assume that (M, g) is a Riemannian manifold with compact
boundary.

Definition 5.29. D ∈ Diff1(E,F ) is called Dirac-type if

σD(x, ξ)
∗
σD(x, η) + σD(x, η)

∗
σD(x, ξ) = 2g(ξ, η) idEx ,

σD(x, ξ)σD(x, η)
∗ + σD(x, η)σD(x, ξ)

∗ = 2g(ξ, η) idFx .

These conditions are called the Clifford relations of the symbol.

Lemma 5.30. If D ∈ Diff1(E,F ) is Dirac-type, then it is elliptic and for 0 6=
ξ ∈ T ∗M ,

σD(x, ξ)
−1 = |ξ|−2

g(x)σD(x, ξ)
∗ .

Since we are in a Riemannian setting, we have the inward pointing unit normal vector
as a unique and canonical choice of inward pointing transversal vectorfield along the
boundary. Throughout our discussion of Dirac-type operators, we calculate with
this vectorfield. Therefore, we fix the following notation.

Notation 5.31. Let ~n be the inward pointing unit normal vector field along ∂M
with respect to g. Let ~N = ~n♭.

Proposition 5.32. For D ∈ Diff1(E,F ) Dirac-type, whenever x ∈ ∂M and 0 6=
ξ ∈ T ∗∂M ,

σD

(
x, ~N

)−1

◦ σD(x, ξ) : Ex → Ex (5.5)

is skew-hermitian. Furthermore, there exists an adapted boundary operator A that
is formally self-adjoint with principal symbol given by (5.5).

Proof. By Lemma 5.30, we obtain

σD

(
x, ~N

)−1

=
∣∣∣ ~N ∣∣∣−2

σD

(
x, ~N

)∗
= σD

(
x, ~N

)∗
.

Therefore,

σD

(
x, ~N

)−1

σD(x, ξ) = σD

(
x, ~N

)∗
σD(x, ξ)

= −σD(x, ξ)
∗
σD

(
x, ~N

)
+ g
(
ξ, ~N

)
idEx

Now, since we have chosen ~n to be the inward pointing unit normal, we have that
g
(
ξ, ~N

)
= 0 and therefore,

σD

(
x, ~N

)−1

σD(x, ξ) = σD

(
x, ~N

)∗
σD(x, ξ)

= −σD(x, ξ)
∗
σD

(
x, ~N

)
= −

(
σD

(
x, ~N

)∗
σD(x, ξ)

)∗
.
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This shows that σD

(
x, ~N

)−1

◦ σD(x, ξ) is skew-hermitian.

Now, we show there exists a formally self-adjoint adapted boundary operator. For
that, fix A0 ∈ Diff1

(
E|Σ

)
be an adapted boundary operator to D with σA0(x, ξ) =

σD

(
x, ~N

)−1

◦ σD(x, ξ). Then define

A :=
1

2

(
A0 + A†

0

)
,

which is formally self-adjoint by construction. It remains to show that the principal
symbol of A is given by (5.5). For that,

σA(x, ξ) =
1

2
σA0(x, ξ) +

1

2
σA†

0
(x, ξ)

=
1

2
σA0(x, ξ)−

1

2
σA0(x, ξ)

∗

=
1

2
σA0(x, ξ) +

1

2
σA0(x, ξ)

= σA0(x, ξ)

= σD

(
x, ~N

)−1

◦ σD(x, ξ) ,

where the second equality follows from Proposition 3.16.

5.7.1 The formally self-adjoint case

Let us now suppose that, in addition to D being Dirac-type, that E = F and that
D is formally self-adjoint. In this case, since σD(x, ξ)

∗ = −σD(x, ξ), the Clifford
relations reduce to

σD(x, ξ)σD(x, η) + σD(x, η)σD(x, ξ) = 2g(ξ, η) idEx . (5.6)

Proposition 5.33. Suppose that E = F , D ∈ Diff1(E) elliptic and formally self-
adjoint. Then, there exists an adapted boundary operator A that is self-adjoint
with principal symbol

σA(x, ξ) = σD(x, ~N)−1 ◦ σD(x, ξ)

that satisfies the following:

I) The anti-commutativity relation

σD

(
x, ~N

)
◦ A = −A ◦ σD

(
x, ~N

)
holds, and it is unique up to the addition of S ∈ SymEnd(E) anti-commuting
with σD

(
x, ~N

)
.
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II) σD

(
x, ~N

)
: EigA(λ) → EigA(−λ) is an isomorphism.

III) spec(A) is symmetric and ηA(s) = 0 for all s ∈ C.

Proof. a) Ad I).

First we establish the uniqueness statement. For that, let A1, A2 be adapted bound-
ary operators satisfying (5.6). Then A1 − A2 ∈ Diff0(E) because the have the
same principal symbol. Clearly B := A1 − A2 anti-commutes with σD(x, ~N) and
A1 = A2 +B.

Now for existence. For that, let A0 be any formally self-adjoint adapted boundary
operator with principal symbol σA0(x, ξ) = σD(x, ~N)−1 ◦ σD(x, ξ). Define

S :=
1

2
A0 +

1

2
σD

(
·, ~N

)
A0σD

(
·, ~N

)∗
,

and note
S∗ =

1

2
A∗

0 +
1

2
σD

(
·, ~N

)
A∗

0σD

(
·, ~N

)∗
= S .

It is readily verified that σS(x, ξ) = 0 using Clifford relations for σD(x, ·). This
shows that S ∈ Diff0(E).

Define
A := A0 − S =

1

2
A0 −

1

2
σD

(
·, ~N

)
A0σD

(
·, ~N

)∗
.

Then,
A∗ = A∗

0 − S∗ = A0 − S = A .

A routine calculation then yields σD

(
x, ~N

)
A+ AσD

(
x, ~N

)
= 0.

b) Ad II). ϕ ∈ EigA(λ), then

AσD

(
x, ~N

)
ϕ = σD

(
x, ~N

)
Aϕ = −λϕ ,

since σD

(
x, ~N

)−1

= −σD

(
x, ~N

)
, this is a bijection.

c) Ad III). We know that spec(A) is discrete and from II), λ ∈ spec(A) ⇔ −λ ∈
spec(A). By definition,

ηA(s) =
∑
λ ̸=0

sgn(λ)|λ|−s = 0 .

5.7.2 Dirac bundles and operators

In this section, following the terminology laid out by Lawson and Michelson in
[35], we present a large class of bundles and associated operators that are often
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determined by geometry. This class of operator are stable in that, through twisting
with auxiliary bundles, we remain in this class.

Let (M, g) be a Riemannian manifold. By ∆M we denote the Clifford algebra
ΛM = ΛT ∗M with product

η 4 ω = η ∧ ω − η ⌞ ω ,

where we recall
g(ξ ⌞ η, %) = g(η, ξ ∧ %) .

Definition 5.34 (Dirac bundle).
(
/S, h/S, /∇

)
→ (M, g, ) is called a Dirac bun-

dle if the following conditions are satisfied:

(I) % : C∞(M,∆M) → C∞(M,End
(
/S
))

is an algebra homomorphism.

(II) h/S(%(η)u, %(η)v) = h/S(u, v) for all η ∈ Λ1M with |η|g = 1.

(III) /∇v(%(η)u) = %(∇vη)u+ %(η) /∇vu for all η ∈ Λ1M .

Remark 5.35. 1. This definition is taken from [35]. However, there, the map
% acts on vectors rather than forms. Through the musical isomorphisms
induced by the metric g, the passage between the two worlds are immediate.

2. Note that by (II), we have ker
(
%|Λ1M

)
= 0.

3. Usually we write v · ϕ in place of %(v)ϕ.

Definition 5.36 (Dirac operator). For x ∈ M and (ei) an orthonormal frame
around x and (ei) the dual co-frame, define

(
/Du
)
(x) =

n∑
i=1

%x
(
ei
)(
/∇eiu

)
(x) =

n∑
i=1

(
ei · /∇eiu

)
(x) .

Remark 5.37. From the properties of the map % and since Λ1 = T ∗M , we can
see %|T ∗M ∈ C∞(M,TM ⊗ /S

∗ ⊗ /S). Now, /∇u ∈ C∞(M,T ∗M ⊗ /S) and since

(TM ⊗ /S
∗
) = (T ∗M ⊗ /S)∗ ,

the operator /D can be written more succinctly as

/D = % ◦ /∇ .

This is a particular advantage of defining % on T ∗M rather than TM .
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Proposition 5.38. σ /D(x, ξ) = %(ξ) = ξ · , and /D is formally self-adjoint and of
Dirac-type.

Proof. This is immediate from 5.34 (II). We leave its verification as an exercise.

Remark 5.39. In fact, the inspiration for Dirac-type operators arises from this
particular case of Dirac operators on Dirac bundles, where the Dirac-type nature
of the operator is immediate.

In what is to follow, we write dt−1 = ~N−1.

Proposition 5.40. Let (M, g) compact and g product near the boundary. That
is, there is an r > 0 s.t. Ur ∼= Zr and g(t, x) = dt ⊗ dt + g∂M(x) inside Ur.
Furthermore, let (/S, h/S, /∇) →M be a Dirac bundle. Let

Au := dt−1 · ei · /∇eiu .

Then, the following hold.

I) The operator A is an adapted boundary operator with principal symbol
σA(x, ξ) = dt−1 · ξ · .

II) dt · A = −A · dt.

III) A is formally self-adjoint.

IV) If h/S and /∇ are constant in the direction ~n, the inward pointing normal,
inside Ur, the operator /D takes the form

/D = dt · (∂t + A) .

Proof. a) Ad I). It is clear from this expression that

σA(x, ξ) = dt−1 · ξ · ,

and therefore, it is an adapted boundary operator for /D.

b) Ad II). First, we write

dt · Au = dt ·
n∑
i=2

dt−1 · ei · /∇eiu =
n∑
i=2

ei · /∇eiu .

On the other hand, we obtain

A(dt · u) =
n∑
i=2

dt−1 · ei · /∇ei(dt · u)

=
n∑
i=2

dt−1 · ei ·
((
/∇eidt

)
· u+ dt−1 · ei · dt · ∇eiu

)
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Now, fix a point x ∈ ∂M and choose a synchronous frame for TM at x, where
e1 = ∂t. Then, we obtain that

(∇eidt)(x) = 0 .

Moreover,
ei · dt · v =

(
ei ∧ dt

)
· v = −dt · ei · v

and therefore

(A(dt · u))(x) =

(
−

n∑
i=2

ei · /∇eiu

)
(x) = −(dt · Au)(x) .

But since x ∈ ∂M was arbitrary, the conclusion follows.

c) Ad III). Within an orthonormal frame {ei}, we compute:

h(Au, v) = h

(
dt−1 ·

n∑
i=2

ei · /∇eiu, v

)

= h

(
n∑
i=2

ei · /∇eiu, dt · v

)

=
n∑
i=2

h
(
ei · /∇eiu, dt · v

)
=

n∑
i=2

h
(
/∇eiu,

(
ei
)−1 · dt · v

)
= −

n∑
i=2

h
(
u, /∇ei

((
ei
)−1 · dt · v

))
+R

=
n∑
i=2

h
(
u, /∇ei

(
ei · dt · v

))
+R

=
n∑
i=2

h
(
u, /∇ei

(
ei ∧ dt− ei ⌞ dt

)
v +

(
ei · dt

)
· /∇eiv

)
+R ,

where the penultimate equality is justified by ei 4 ei = ei ∧ ei − ei ⌞ ei = −1. In the
last term we can observe ei ⌞ dt = 0 and on choosing (ei) with e1 = ∂t synchronous
at x, we absorb the remainder term R to an expression of the form div(X) for some
X ∈ C∞(M,TM), and therefore,

h(Au, v) =
n∑
i=2

h
(
u, ei · dt · /∇eiv

)
+ div(X)

=
n∑
i=2

h
(
u,−dt · ei · /∇eiv

)
+ div(X)

=
n∑
i=2

h
(
u, dt−1 · ei · /∇eiv

)
+ div(X)

= h(u,Av) + div(X) .
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Since ∫
∂M

div(X) dν = 0 ,

we obtain A = A†.

d) Ad IV). Let (ei) be an orthonormal frame for TM near a point x = (t, y) ∈ Ur
with e1 = ~n = ∂t. Then

(
/Du
)
(x) =

(
dt · /∇∂tu

)
(x) +

n∑
i=2

(
ei · /∇eiu

)
(x)

= dt ·

((
/∇∂tu

)
(x) +

n∑
i=2

(
dt−1 · ei · /∇eiu

)
(u)

)
.

We examine the first term. For that, let (sα) be a frame for /S near x = (t, y). Then,(
/∇∂tu

)
(x) =

(
/∇∂tu

α
)
(t0, x0)sα(t0, x0) + uα(t0, x0)

(
/∇∂ts

α
)
(t0, x0) .

Since we have assumed that both h/S and /∇ are constant in the ~n = ∂t direction, we
have that

∇∂ts
α = 0

and therefore, (
/∇∂tu

)
(x) = (∂tu)(x) .

Therefore, we obtain that /D is of product form as promised.

Corollary 5.41. For (M, g) compact, g product near the boundary and with
(h/S, /∇) being constant in the normal direction near the boundary, the eta-function
ηA(s) = 0 for s ∈ C.

Example 5.42. 1. Let /S = ΛM = ΛT ∗M and /∇ = ∇ΛM induced from the
Levi-Civita connection ∇g of g. Then

%(η)ω = η ∧ ω − η ⌞ ω ,

and the associated Dirac operator is the Hodge-Dirac operator

/D = DH = d+ d∗g .

If g is product near the boundary, then ∇ΛM and the induced metric h on ΛM
are also constant in the normal direction.

2. Let M be Spin and fix a Spin structure ξ. Let /S = /∆M , the Spin bundle with
respect to ξ and g. On considering the canonical irreducible representations
(one in odd, two in even dimensions) leads to %(η)ω = η ·ω. Then the induced
/D is a Spin-Dirac operator.
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3. Let
(
D,∇E, hE

)
be a Hermitian bundle with metric connection, then /̃S :=

/S ⊗ E produces a new Dirac bundle by defining

%(η)(ϕ⊗ u) = %(η)ϕ⊗ u .

We get a canonical connection /̃S and an induced Dirac operator /DE.

When /S = /∆M , then /DE is typically called a twisted Dirac operator or twisted
Spin-Dirac operator.

Exercise 5.43. Verify that the structures defined in Example 5.42 3. indeed pro-
duce a new Dirac bundle.

5.8 Geometric applications

The Atiyah-Patodi-Singer index theorem has numerous geometric applications, with
the quintessential example being its consequences in the Spin case and to the so-
called signature operator. We give an outline of these applications in this section.
However, first, we must make a slight detour through genera and various character-
istic differential forms, necessary to capture the geometric features.

5.8.1 Genera and forms

Definition 5.44. A polynomial map P : Mat(N,C) → C is said to be invariant
if

P
(
T−1XT

)
= P (X)

for all X ∈ Mat(N,C) and for all T ∈ GL(N,C).

Let (E,∇) →M be a C-vector bundle, and recall that the curvature of ∇ is

R(X,Y )v = ∇X∇Y v −∇Y∇Xv −∇[X,Y ]v .

Definition 5.45 (Connection one-form and curvature two-form).
Let (uj) be a frame of E inside U ⊂ M . Then the connection one-form
ωji ∈ C∞(U,Λ1M) is given by

∇Xui =
N∑
i=1

ωji (X)uj .

The curvature 2-form is Ωj
i ∈ C∞(U,Λ2M) with

R(X,Y )ui =
N∑
j=1

Ωj
i (X,Y )ui .
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Note that since R(X,Y ) = −R(Y,X), Ωj
i is is indeed a local 2-forms and (Ωj

i ) is a
matrix of local 2-forms.

Indeed, the connection one-form and curvature two-forms are related by the readily
verified expression

Ωj
i = dωji +

∑
k

ωjk ∧ ω
k
i .

Definition 5.46 (Even forms). Define

ΛevM :=
⊕
k∈N

Λ2kM

Lemma 5.47. (ΛevM,∧) is a commutative algebra.

Proof. For forms α ∈ ΛkM and β ∈ ΛlM , we have that

α ∧ β = (−1)k+lβ ∧ α .

On ΛevM the forms are all even, the conclusion follows.

Proposition 5.48. An invariant polynomial map P : Mat(N,C) → C defines a

P
((
Ωj
i

))
∈ ΛevM .

We shall not go into the guts of this statement, but the intuition is that scalar mul-
tiplication is simply replaced by the wedge-product. This is a well-defined operation
by Lemma 5.47, which guarantees that (ΛevM,∧) is a commutative algebra.

Example 5.49. The following is the quintessential polynomial map that we will
work with. Let

P (X) = det(X) =
∑
σ∈SN

sgn(σ)
N∏
i=1

Xi,σ(i) .

Then the induced action on a curvature 2-form written out locally as Ωj
i is given by

P
((
Ωj
i

))
=
∑
σ∈Sn

sgn(σ)
∧N

i=1
Ω
σ(i)
i .

Proposition 5.50. If (ηi) and (η̃i) are two local frames in U ∩ Ũ . Then for any
invariant polynomial map P ,

P
((
Ωj
i

))
= P

((
Ω̃j
i

))
∈ C∞

(
U ∩ Ũ ,ΛevM

)
.
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Proof. The transformation between (Ωi
j) and (Ω̃j

i ) is precisely given by an invertible
T such that

(Ω̃i
j) = T−1(Ωi

j)T .

By the invariant condition, the conclusion follows.

Exercise 5.51. Verify that there exists an invertible T such that (Ω̃i
j) = T−1(Ωi

j)T .

Corollary 5.52. Letting Ω be a curvature 2-form, we obtain

P (Ω) ∈ C∞(M,ΛevM)

for any invariant polynomial map P .

Remark 5.53. This shows that, as opposed to the frame-dependent object Ωj
i ,

we are able to extract a global object P (Ω) due to the invariant nature of P .

Recall that

0 → C∞(M,Λ0T ∗M
) d−→ C∞(M,Λ1M

)
→ · · · → C∞(M,ΛnM) .

Since d2 = 0, this is a co-chain complex.

Notation 5.54. The form η ∈ C∞(M,ΛM) is called closed if dη = 0 and exact
if η = dϑ for some ϑ ∈ C∞(M,ΛM).

Definition 5.55 (de Rham cohomology). Let dk := d|C∞(M,ΛkM) :

C∞(M,ΛkM
)
→ C∞(M,Λk+1M

)
and define

Hk
dR(M) := ker(dk)⧸ran(dk−1)

.

Theorem 5.56. For P an invariant polynomial, given a curvature 2-form Ω,
P (Ω) is closed. Consequently,

[P (Ω)] ∈
⊕
k≥0

H2k
dR(M) =: Hev

dR(M) .

The class [P (Ω)] is independent of Ω.
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Remark 5.57. On a manifold with boundary, it may be that P (Ω) 6= 0 but
[P (Ω)] = 0. Suppose that [P (Ω)] = 0. Then, P (Ω) is exact, i.e., P (Ω) = dϑ for
some ϑ ∈ C∞(M,ΛM). On integrating,∫

M

P (Ω) =

∫
M

dϑ =

∫
∂M

θ ,

using Stokes’ Theorem. Therefore, integration of classes is not well-defined on
a manifold with boundary, as it is the case on a boundaryless manifold. As a
consequence, in our setting, it is important to keep track of the form, and not just
the class as it is in the case with closed manifolds.

Definition 5.58. Let P : Mat(n,C) → C an invariant polynomial map of degree
k and Ω a curvature 2-form. Then

P (Ω) ∈ C∞(M,Λ2kM
)

,

and this is called the Chern-Weil form of Ω via P .

[P (Ω)] ∈ H2k
dR

(
M,Λ2kM

)
is the associated Chern-Weil class.

Remark 5.59. The Chern-Weil class [P (Ω)] is independent of Ω. Therefore, it is
often denoted by P (E), emphasising its dependency on the bundle E.

Of particular geometric significance, particularly to index theory, are the following
form and class constructed out of a particular polynomial map.

Definition 5.60 (Chern form/class). Let

c(A) = det

(
I +

1

2πi
A

)
.

Then, the form
c(Ω) ∈ ΛevM

is called the total Chern form and

c(E) := [c(Ω)] ∈ Hev
dR(M,C)

is the total Chern class of E.

Remark 5.61. Since c(Ω) ∈ ΛevM , we can write

c(Ω) = 1 + c1(Ω) + . . . ,+cn(Ω) ,
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where
ck(Ω) ∈ C∞(M,Λ2kM

)
.

Lemma 5.62. Let Ω be a connection 2-form and Ω∗ the 2-from corresponding to
the induced connection

∇∗ : C∞(M,E∗) → C∞(M,T ∗M ⊗ E∗)

satisfying
d(ϕ∗(ψ))(X) = (∇∗

Xϕ
∗)(ψ) + ϕ∗(∇Xψ) .

Then,
ck(Ω

∗) = (−1)kck(Ω) .

Proof. Exercise.

Lemma 5.63. If (∇, h) is a compatible connection and metric on E → M , then
c(Ω) is real-valued.

Proof. Let Ω =
(
Ωi
j

)
be written with respect to an orthonormal frame. By compat-

ibility, Ω =
(
Ωi
j

)
is skew-Hermitian. Therefore,

c(Ω) = det

(
1 +

1

2πi
Ω

)
= det

(
1− 1

2πi
Ω

)
= det

((
1− 1

2πi
Ω

)T)

= det

(
1− 1

2πi
Ω∗
)

= det

(
1 +

1

2πi
Ω

)
= c(Ω) .

5.8.2 Real bundles, Pontryagin forms and classes

So far, we have considered the Chern-Weil constructions for complex bundles. In
applications, it is of vital importance to consider the real case. The real case can be
accessed through complexification and the real nature of the bundle results in extra
structural features of the associated constructions.

To proceed, let V →M be a real bundle and E := V ⊗R C its complexification.

Lemma 5.64. Let (∇, h) be a compatible connection and metric on V and let ∇C

and hC denote the canonical extensions to V ⊗R C. Then for the induced 2-form
ΩC we have

ck(ΩC) = ck(Ω
∗
C) .
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Proof. Since Ω is real, by the compatibility of the metric and connection, in an
orthonormal frame, Ω can be seen to be skew-symmetric. The complexification ΩC
retains the skew-symmetry, improving on the skew-hermitian condition, which we
saw is valid in the complex case. Then, a direct calculation yields the conclusion.

Corollary 5.65. For (∇, h) as in the lemma, ck(ΩC) = 0 if k is odd.

Proof. From Lemma 5.62, we have that ck(Ω∗
C) = (−1)kck(ΩC). Combining this

with Lemma 5.64, we obtain

ck(ΩC) = ck(Ω
∗
C) = (−1)kck(ΩC) .

Clearly, this can only be satisfied if ck(ΩC) = 0 for k odd.

These observations then allow us to define the Chern-Weil analogue in the real
setting.

Definition 5.66 (Pontryagin forms/classes). For (V,∇, h) → M real vector
bundle with (∇, h) compatible, define the k-th Pontryagin form

Pk(Ω) := (−1)kc2k(ΩC) ∈ C∞(M,Λ4kM
)

and the total Pontryagin form

P (Ω) :=
∞∑
k=0

P0(Ω) ∈ C∞(M,Λ4∗M
)

.

Similarly,

Pk(V ) := [Pk(Ω)] ∈ H4k
dR(M) and P (V ) := [P (Ω)] ∈ H4∗

dR(M) .

Remark 5.67. Note that as a consequence of Lemma 5.63, all of the objects in
the definition are real-valued.

Definition 5.68. Let f(x) :=
∑∞

k=0 fkx
k ∈ R[[x]] be a formal power series. Define

Λf : C
∞(M,ΛevM) → C∞(M,ΛevM)

by
Λf |C∞(M,Λ2kM) := (−1)k+1kfk idC∞(M,Λ2kM) .
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Recall that log(1 + t) = t− t2

2
+ t3

3
− . . . . For a fixed degree form, only finitely many

terms occur in the expansion. Consider

log(P (Ω)) = log(1 + P1(Ω) + P2(Ω) + . . . )

= P1(Ω) + P2(Ω)−
P1(Ω)

2

2
+ . . .

Definition 5.69. For f(x) :=
∑∞

k=0 fkx
k ∈ R[[x]], define

Pf (Ω) := exp(Λlog ◦f (log(P (Ω)))) ∈ C∞(M,Λ4∗M
)

,

this is called the multiplicative characteristic form.

5.8.3 Geometric applications in even dimensions

In the last section, we saw that the Chern-Weil forms are valued in ΛevM and the
Pontryagin forms land in Λ4∗M . Later on, we will see that it is of importance to
be able to integrate the top order form to relate geometric quantities to boundary
conditions. Therefore, from now on, unless otherwise stated, we assume that (M, g)
is compact with even dimension n = 2m. Clearly, dim(∂M) = 2m − 1 and we
continue to assume that g = dt ⊗ dt + g∂M (i.e. is product) in a neighbourhood of
∂M .

The Spin case

The first applications we consider is in the context of Spin geometry. Therefore,
in addition to the assumptions we have already made on M , we suppose that it is
Spin. More precisely, we assume M admits a Spin structure. In particular, this
means that M is orientable.

Since M is even dimensional, we have two nontrivial canonical irreducible represen-
tations %±. The Spin bundle then splits as

/∆M = /∆
+
M ⊕ /∆

−
M

to the positive and negative half-spinors.

Moreover, dim
(
/∆M

)
= 2

n
2 = 2m and dim

(
/∆
±
M
)

= 2
n−2
2 = 2m−1. The Spin-

Dirac operator decomposes, respecting the splitting into the positive and negative
half-spinors as

/D =

(
0 /D

−

/D
+

0

)
with /D

±
: C∞

(
M, /∆

±
M
)
→ C∞

(
/∆
∓
M
)

.

Since g is product near the boundary, we have that /D = σ0(∂t + A) near ∂M with
A a self-adjoint adapted boundary operator. A simple calculation then yields

A =

(
A+ 0
0 A−

)
,
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where A± are adapted operators for D± respective. The symbol also splits as

σ0 =

(
0 σ−

0

σ+
0 0

)
and we obtain that

/D
+
= σ+

0

(
∂t + A+

)
.

Lemma 5.70. /∆
+
M |∂M → ∂M can be identified with /∆∂M → ∂M and A+ with

the spin-Dirac operator on ∂M .

Definition 5.71. Let

â(x) :=

√
x
2

sinh
(√

x
2

) = 1− x

24
+

7x2

5760
+ . . . .

We define he A-hat or A-roof form associated with a curvature 2-form Ω to be:

Â(Ω) := Pâ(Ω)

Remark 5.72. Note that

log(â(x)) =
−x
24

+
x2

2880
+ . . . .

Therefore,

Â(Ω) = exp[Λlog ◦â(logP (Ω))]

=1− P1(Ω)

24
+

7P1(Ω)
2 − 4P2(Ω)

5760
+ . . . .

This is the crucial object that is required for us to give a geometric interpretation
of the APS theorem in the Spin manifold context.

Theorem 5.73. (M, g) is a Riemannian spin manifold with boundary of dimen-
sion n = 2m and g = dt⊗ dt+ g∂M near ∂M . Then∫

M

α0(x) dµg(x) =

∫
M

Â(Ω)

and
ind
(
/D
+
APS

)
=

∫
M

Â(Ω)− dim(ker(A+)) + ηA+(0)

2
.
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Remark 5.74. 1. Note that, since it only makes sense to integrate an n-form
on an n-manifold, we are implicitly writing∫

M

Â(Ω) :=

∫
M

Ân(Ω) .

2. Let us compare this with the Atiyah-Singer index theorem on (M ′, g) with
∂M ′ = ∅. In this context, the index theorem reads

ind
(
/D
+
)
=

∫
M

Â(TM) ,

where
Â(TM) =

[
Â(Ω)

]
.

This object is topological.

Therefore, in the absence of boundary, the index theorem says that

analytical index = topological index .

Boundary no longer permits this expression, due to the reasons we gave
in Remark 5.57. Therefore, in the boundary situation, the analytic index
is described by a geometric integral in the way of the Â form of Ω and a
boundary term in the way of ηA(0).

Exercise 5.75. Let (E,∇, h) be a hermitian bundle with (∇, h) compatible. The

twisted bundle splits /∆M ⊗ E = /∆
+
M ⊗ E ⊕ /∆

−
M ⊗ E and /DE =

(
0 /D

−
E

/D
+
E 0

)
.

Taking this exercise for granted, we have the following straightforward extension of
the previous theorem. Note that here, the integral over c(Ω) ∧ Â(ω) is again by
selecting the n-th order term.

Theorem 5.76. Let (E,∇, h) be a hermitian bundle with (∇, h) compatible and
constant in the normal direction in a neighbourhood of ∂M . Then, for the twisted
spin-Dirac operator /DE on /∆M ⊗ E, we have

ind
(
/D
+
E,APS

)
=

∫
M

c(Ω) ∧ Â(Ω)−
dim

(
ker
(
A+
E

))
+ ηA+

E
(0)

2
.

With the aid of Theorem 5.73, we are able to obtain the following consequences
in various dimensions where the Â-form vanishes. Let us remind ourselves that
n = 2m.
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1. Suppose that m is odd. In other words, n = 2(k + 1) = 4k + 2 ≡ 2 mod 4.
Then

Ân(Ω) = Â4k+2(Ω)/∈C∞(M,Λ4∗M
)

,

and so Ân(Ω) = 0.

2. Now consider the case m ≡ 1 mod 4. That is m = 4k + 1 or n = 2k + 2.
Then dim(∂M) = n− 1 = 8k+1. The operator A+ can be identified with the
Spin-Dirac operator on /∆∂M , and moreover, we know that

A+ = iB ,

where B is real skew-adjoint. Therefore spec(A+) is symmetric (with mul-
tiplicity) which yields ηA+ = 0. Also Ân(Ω) = Â8k+2(Ω) = 0, so the index
theorem yields

dim
(
ker
(
A+
))

= −2 ind
(
/D
+
APS

)
In fact, through methods beyond our discussion here, dim(ker(A+)) mod 2
is an invariant of ∂M independent of the metric. Therefore, this yields an
analytic proof that it vanishes for ∂M Spin.

3. It remains to consider m ≡ 3 mod 4, which occurs if and only if m = 4k + 3
or n = 8k + 6. Through similar considerations as before, we have that

Ân(Ω) = Â8k+6(Ω) = 0 .

From the classification of the Clifford algebras we know that the Spin bundle
in this dimension has a quaternionic structure Q (particularly an isomorphism
on spinors) satisfying the anti-commutativity relation

QA+ = −A+Q .

Using Q in place of σD(x, ~N) in the proofs of II) and III) in Proposition 5.33,
we obtain that spec(A+) is symmetric (counting multiplicities) and therefore,
ηA+ = 0. In this case, the index theorem says

−2 ind
(
/D
+
APS

)
= dim

(
ker
(
A+
))

,

or that dim(ker(A+)) is even dimensional.

The Signature theorem

In this section, we return back to a more general setting. Let (M, g) be an Rieman-
nian manifold with boundary ∂M . The additional structure we require is that M
is orientable. Note then that the volume density µg is, in fact, an n-form. For the
moment, we do not assume that M is compact.

First, we define the following metric on differential forms.
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Definition 5.77. For α, β ∈ ΛkM with α = α1 ∧ · · · ∧ αk and β = β1 ∧ · · · ∧ βk
pure products of covectors, define g∗(α, β) = det

(
(g(αi, βj))

n
i,j=1

)
. Then extend

to the whole of ΛM via linearity.

Definition 5.78 (Hodge-star). Define ∗ : ΛM → ΛM as the operator satisfy-
ing

α ∧ ∗β = g∗(α, β)µg

for all α, β ∈ ΛkM , extended by linearity to ∗ : ΛM → ΛM .

Lemma 5.79. The Hodge-star operator ∗ : ΛkM → Λn−kM is an isometry that
satisfies

∗∗|ΛkM = (−1)n(n−k) idΛkM .

For the purposes of this section, the Hodge-star operator gives us with the ability
to describe the formal adjoint d∗g in the following manner.

Lemma 5.80. The operator d∗g can be written as

d∗g|ΛkM = (−1)n(n−1)+1∗d∗ = (−1)k∗−1d∗ .

We omit the proofs of these lemmata as they are standard facts. They are both
readily verified.

Notation 5.81. Recall that a bounded invertible map T on a Banach space is
called an involution if T−1 = T .

Definition 5.82. Let dim(M) = n = 2m. Then define an involution Υ : ΛM →
ΛM by

Υϕ := ıp(p−1)+m∗ϕ

for ϕ ∈ ΛpM .

Remark 5.83. Note that in the definition of the involution, we have that m = n
2

appearing in the exponent. Therefore, the assumption that n = 2m is central to
our discussion from here on.

Exercise 5.84. Show that Υ : ΛM → ΛM has spectrum spec(Υ) = {±1} and
EigΥ(−1) ∼= EigΥ(1).
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As a consequence of Exercise 5.84, Υ decomposes ΛM as a sum of its eigenspaces.
Therefore, define

Λ±M := EigΥ(±1) .
From this, it is immediate that

ΛM = Λ+M ⊕ Λ−M .

Lemma 5.85. The involution Υ anti-commutes with the Hodge-Dirac operator
DH = d+ d∗g. That is,

ΥDH = Υ
(
d+ d∗g

)
= −DHΥ .

Proof. This follows from Lemma 5.80 for expressing d∗g in terms of d and ∗. We
leave the verification of this as an exercise.

Corollary 5.86. We have

DH|C∞(M,Λ+M) : C
∞(M,Λ+M

)
→ C∞(M,Λ−M

)
.

As a consequence of these considerations, we are now finally able to define the
following operator. It is the protagonist of this subsection.

Definition 5.87. On (M, g) Riemannian manifold of dimension n = 2m, let

S := DH|C∞(M,Λ+M)

to be the signature operator.

Proposition 5.88. We have that S ∈ Diff1(Λ
+M,Λ−M) is elliptic.

Although our discussion up to this point only required even dimensions, in what is
to come, we assume that the dimension is divisible by 4. We begin with the following
observation.

Proposition 5.89. Let (M, g) be a Riemannian manifold of dimension n = 4k.
Suppose that g is product near ∂M . Then, the following hold.

I) The bundle Λ+M |∂M can be identified with Λ∂M .

II) The signature operator decomposes as

S = σ(∂t + A) ,
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where A is the self-adjoint adapted boundary operator for S with

A|Λp∂M = (−1)k+p+1(εp∗∂Md∂M − d∂M∗∂M) .

Here, ∗∂M : Λ∂M → Λ∂M is the Hodge-star operator on Λ∂M , d∂M is the
exterior derivative on Λ∂M , and εp = 1 for a 2p form and εp = −1 for
(2p− 1)-forms of Λ∂M .

III) The operator A commutes with ϕ 7→ (−1)p∗∂Mϕ on Λp∂M preserving parity.
Therefore, we obtain the splitting

A =

(
Aev 0
0 Aodd

)
: C∞(∂M,Λev∂M ⊕ Λodd∂M

)
→ C∞(∂M,Λev∂M ⊕ Λodd∂M

)
.

Proof sketch. The expression for A simply comes from the definition of S through
a calculation. Also note that the expression for A requires dim(M) = 4k, and
this is what allows us to assert the preservation of parity and commutativity with
ϕ 7→ (−1)p∗ϕ. Consequently, we obtain the decomposition of the operator.

Corollary 5.90. The even part Aev is obtained through composing Aodd with an
isomorphism and therefore,

ηA(s) = 2ηAev(s) = 2ηAodd(s) .

Proof. Since Aev = Aodd◦Φ, we have that spec(Aev) = spec(Aodd) up to multiplicity.
Therefore, the conclusion follows.

In order to describe a geometric consequence via the index theorem, we require a
polynomial of the curvature.

Definition 5.91 (Hirzebruch L-polynomial). Let `(x) be the formal power
series of √

x

tanh(
√
x)

.

Then, for a curvature 2-form Ω, define

L(Ω) := Pℓ(Ω) = exp(Λlog ◦ℓ(log(P (Ω)))) ∈ C∞(M,Λ4∗M
)

.

This is called the Hirzebruch L-polynomial of Ω.

This term then appears as a geometric contribution in the application of the APS
theorem to yield the following.
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Theorem 5.92 (Local index theorem for the Singature operator). On
an oriented Riemannian manifold of dim(M) = 4k, with g product near ∂M ,

ind(SAPS) = ind
(
SBAPS(A)

)
=

∫
M

L(Ω)− (dim(ker(Aev)) + ηAev(0)) .

Corollary 5.93 (Signature theorem). The quantity

ind(SAPS) + dim(ker(Aev)) = sign(M) ,

where sign(M) is the signature of a non-degenerate quadratic form in the coho-
mology H2k(M). Therefore,

sign(M) =

∫
M

L(Ω)− ηAev(0) .

Remark 5.94. This is a truly remarkable formula. The signature

sign(M)

is a topological invariant while ∫
M

L(Ω)

is a differential geometric object. The remaining quantity

ηAev(0)

is a spectral invariant. That is, if we scale g, the object ηAa(s), a priori, is also
altered. However, only the the non-zero eigenvalues move and the kernel remains
fixed. Therefore, ηAev(0) remains invariant. It is remarkable that three objects,
one measuring topology, one geometry and one an aspect of the boundary appear
in a single formula.



6 Elliptically regular boundary
conditions

In Chapter 5, we saw that significance of the APS boundary condition in its ap-
plicability to geometry and topology. We have already seen that this boundary
condition is elliptically regular. Motivated by this, and through applications that
we will present in this chapter, we will obtain a deep structural understanding of all
such elliptically regular boundary conditions. Our discussion can be carried out in
a very general context. Therefore, on returning to our assumptions earlier, unless
we explicitly state otherwise, let us fix the following background assumptions on the
objects appearing in this Chapter.

(I) (M,µ) measured manifold with ∂M compact.

(II)
(
E, hE

)
,
(
F, hF

)
→M Hermitian bundles.

(III) D : C∞(M,E) → C∞(M,F ) elliptic.

(IV) D and D† are complete (i.e. compactly supported smooth sections permitted
to kiss the boundary are dense in the maximal domain).

Let us further recall some terminology from earlier in this text. Applying Defini-
tion 3.75 to the first-order case, we see that a boundary condition B ⊂ Ȟ(D) (i.e.
closed subspace of Ȟ(D)) is elliptically regular if

B ⊂ H
1
2 (∂M,E) and B† ⊂ H

1
2 (∂M,F )

where B† :=
{
v|∂M

∣∣∣ v ∈ dom(D∗
B)
}

.

Similarly, in Definition 3.78, we called a boundary condition B Fredholm if DB is a
Fredholm operator.

The definition we have just recalled of an elliptically regular boundary condition is
of a qualitative nature. These boundary conditions have a very intricate and rich
structure. The goal of this section is to obtain an extremely powerful and useful
characterisation of such boundary conditions which reveals these structural features.

We have already seen that such boundary conditions are plentiful and arise naturally.
Explicitly, given any inward pointing vectorfield T on ∂M and any adapted boundary
operator A with

σA(x, ξ) = σD(x, dt)
−1 ◦ σD(x, ξ) ,

in Definition 5.9, we defined the APS boundary condition

BAPS(A) = χ−(Aa)H
1
2 (∂M,E) .
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Here, a = 1
2
min{−λ−1, λ1} where λj ∈ Re(spec(A)).

In Proposition 5.10, we proved that BAPS(A) is elliptically regular. In its proof,
we conveniently used the fact that Ȟ(D) = ȞAa(D0), allowing us to compute via
using the boundary condition to describe the Czech space, the space of all possible
boundary conditions.

Motivated by this, we consider a class of projectors which are the basis of much of
our considerations of this chapter.

Definition 6.1 (Boundary decomposing projector). We say that P+ is
boundary decomposing for D if

(I) P+ : Hα(∂M,E) → Hα(∂M,E) is a projector for α ∈
[
−1

2
, 1
2

]
.

(II) P+ : Ȟ(D) → Ȟ(D) projector and P− := (I − P+) : Ȟ(D) → H
1
2 (∂M,E).

(III) ‖u‖Ȟ(D) ' ‖P−u‖H 1
2 (∂M,E)

+ ‖P+u‖H− 1
2 (∂M,E)

.

Remark 6.2. Condition (III) is actually not required, it is implied by (II) since
P− lands in H

1
2 (∂M,E). Therefore, by the open mapping theorem, the norms

H
1
2 (∂M,E) and H− 1

2 (∂M,E) are equivalent on P−Ȟ(D).

Example 6.3. 1. P+ = χ+(A) for A invertible bisectorial adapted boundary
operator for D.

2. When M is compact, let PC : H
1
2 (∂M,E) → H− 1

2 (∂M,E) be a Calderón
projector. That is, a projector such that

C = PCH
− 1

2 (∂M,E) =
{
u|∂M

∣∣∣ u ∈ ker(Dmax)
}

.

Then P+ := PC is boundary decomposing.

Motivated by our analysis of ȞA(D0) and its accompanying space ĤA(D), we define
the following.

Definition 6.4. Let

ĤP+(D) := P∗
+H

1
2 (∂M,E)⊕ P∗

−H
− 1

2 (∂M,E)

with
‖u‖2ĤP+

(D) :=
∥∥P∗

+u
∥∥2
H

1
2 (∂M,E)

+
∥∥P∗

−u
∥∥2
H− 1

2 (∂M,E)
.

Notation 6.5. If B = B1 ⊕ B2 is a Banach space, let PB1,B2 be the projection to
B1 along B2 and define B∗

1 := P∗
B1,B2

B∗ and B∗
2 := P∗

B2,B2
B∗.
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Definition 6.6 (Graphical L2-decomposition). Let B ⊂ Ȟ(D) be a boundary
condition and P+ a boundary decomposing projector. Suppose that:

(I) There exist mutually complementary subspaces W± and V± of L2(∂M,E)
such that

W± ⊕ V± = P±L
2(∂M,E) .

(II) W±,W
∗
± ⊂ H

1
2 (∂M,E) and are finite dimensional.

(III) There exists a bounded linear map

g : V− → V+

s.t.

g
(
V− ∩ H

1
2 (∂M,E)

)
⊂ V+ ∩ H

1
2 (∂M,E) ,

g∗
(
V ∗
+ ∩ H

1
2 (∂M,E)

)
⊂ V ∗

− ∩ H
1
2 (∂M,E) ,

and

B = graph
(
g|

H
1
2 (∂M,E)

)
⊕W+

=
{
v + gv

∣∣∣ v ∈ V_ ∩ H
1
2 (∂M,E)

}
⊕W+ .

Then we say that B is L2-graphically decomposable w.r.t. P+.

The fundamental theorem of this chapter is the following.

Theorem 6.7 (Equivalence of ellpitic regularity and L2-graphical decomposition).
Let P+ be a boundary decomposing projector. Then, a boundary condition
B ⊂ Ȟ(D) is elliptically regular if and only if B is L2-graphically decomposable
w.r.t. P+. In this case,

σ∗
0

(
B†) = B⊥,ĤP+

(D) =
{
u− g∗u

∣∣∣ u ∈ V ∗
+ ∩ H

1
2 (∂M,E)

}
.

The proof of this theorem is somewhat complicated, consisting of many smaller in-
tricate pieces. We will present the proof later. First, we will consider some examples
and an extremely important application of this decomposition - the relative index
theorem à la Gromov-Lawson.
Example 6.8. 1. LetA be an adapted boundary operator forD and a = 1

2
min{−λ−1, λ1},

λj ∈ R(spec(A)), as we have already used in defining the APS boundary con-
dition with respect to A. Then Aa = A − a is invertible bisectorial, and
P+ = χ+(A) is a boundary decomposing projector. Let

V± := χ±(Aa)L
2(∂M,E) and W± := {0}
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and g : V− → V+ be given by g(v) = 0. Then

B := graph
(
g|

H
1
2

)
⊕W+ =

{
v + 0v

∣∣∣ v ∈ V− ∩ H
1
2 (∂M,E)

}
= χ−(Aa)L

2(∂M,E) ∩ H
1
2 (∂M,E) = χ−(Aa)H

1
2 (∂M,E) = BAPS(A) .

2. In Example 1., we can choose r 6= a. It is easily seen that the difference be-
tween χ±(Ar)L

2(∂M,E) and χ±(Aa)L
2(∂M,E) are a finite dimensional space

of smooth sections corresponding to the span of generalised eigenspaces sand-
wiched between the spectral cuts at r and a. Therefore, to describe BAPS(A)
with respect to P+ := χ+(Ar), the spaces W+ and W− need to be chosen
appropriately. In this case, they will contained in smooth sections.

3. Suppose now that M compact, and let P+ := PC be a Calderón projector.
Then with the choice of

V± := P±
(
L2(∂M,E)

)
and W± := {0}

with g : V− → V+ given by g(v) := 0, we obtain that

B := graph(g) ∩ H
1
2 (∂M,E)⊕W+ = (I − PC)H

1
2 (∂M,E) .

From Theorem 6.7, B is elliptically regular. Note that by construction, B ⊂
H

1
2 (∂M,E). Therefore, the nontrivial conclusion we obtain from invoking

Theorem 6.7 is that B† ⊂ H
1
2 (∂M,F ).

Note that ker(DB) = ker(Dmin) since C =
{
u|∂M

∣∣∣ u ∈ ker(Dmax)
}

and (I − PC)C =

0.

4. In 3., let us modify the construction by choosing W+ ⊂ C ∩ H
1
2 (∂M,E) finite

dimensional, ensuring W ∗
+ ⊂ H

1
2 (∂M,E) and then defining

B := (I − PC)B ⊕W+ .

Then,
ker(DB) = ker

(
DW+

)
=
{
u ∈ ker(Dmax)

∣∣∣ u|∂M ∈ W+

}
.

Remark 6.9. Example 4. is of significance to boundary value problems. We have
previously discussed that, from a modern perspective, it is useful to divorce the
‘boundary value’ part from the ‘problem’ aspect. However, from 6.8 4., at least
historically, it is clear how these aspects might be seen hand-in-hand.

In 6.8 4., what we have is a boundary condition B, with prescribed solution space
W+, yielding DB. I.e.,

Du = 0 with u|∂M ∈ W+ .

The advantage of the operator DB over DW+ is that the former is a Fredholm
operator while the latter is not.
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Early on in the theory of boundary value problems, particularly from the work
of Seeley in [Seely66], Calderón projectors were the only boundary decompos-
ing projectors available, and therefore, it is tempting to think of boundary value
problems without separating these into two aspects. We see, however, from a
global analysis point of view, as in 6.8 1., the spectral projectors of associated
adapted boundary operators yield an alternative geometry for Ȟ(D), better suited
to another class of problems.

The real power of Theorem 6.7 is that it allows us to decompose an elliptically
regular boundary condition from any imposed geometry on Ȟ(D), i.e. for any
boundary decomposing projector.

6.1 The relative index theorem

A significant application of Theorem 6.7 is is relative index theorem. Introduced
by Gromov and Lawson in their seminal paper [23] on the study of positive scalar
curvature. This is a topic that has recently seen a revival and is currently an active
area of research.

In application, the relative index theorem needs to be applied to the non-compact
setting, even though the guiding questions are confined to the study of positive scalar
curvature on closed manifolds. Given a closed manifold, a noncompact version is
created with this compact manifold as the boundary, and the so-called relative index
of this non-compact manifold is then used to understand the space of positive cur-
vature metrics on the compact boundary. Since we are forced to deal with the index
of operators on non-compact manifolds, we require the operators to be Fredholm.
Therefore, in addition to the usual requirement of completeness, we require further
control of the operator at infinity. This leads us to the following definition.

Definition 6.10. D ∈ Diff1(E,F ) elliptic is coercive at infinity if there exists a
compact set K ⊂M and C <∞ s.t.

‖u‖L2(M,E) ≤ C‖Du‖L2(M,F )

for all u ∈ C∞
c (M,E) with sptu ⊂M \K.
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Example 6.11. 1. ForM compact, choosingK =M , every ellipticD is coercive
at infinity.

2. Suppose that (M, g) is Riemannian Spin manifold with compact boundary ∂M
and D = /D is the Spin-Dirac operator. Then, the Weitzenböck formula reads

/D
† /Du = /∇† /∇u+ 1

4
scalg(u) ,

where scalg is the scalar curvature of g.

Suppose that scalg ≥ κ > 0 outside K ′ ⊂M and set K := K ′∪B(∂M, ε). Let
u ∈ C∞

c (M,E) with spt(u) ⊂M \K. Then

∥∥ /Du∥∥2 = 〈 /D† /Du, u
〉
=
〈
/∇† /∇u, u

〉
+

1

4
〈scalg(u), u〉

≥
∥∥ /∇u∥∥2 + 1

4
κ‖u‖2 ≥ κ

4
‖u‖2 .

3. More generally, if (M, g) is Riemannian (not necessarily Spin) with compact
boundary and D : C∞(M,E) → C∞(M,F ) is a Dirac-type operator, then a
Weitzenböck formula

D†D = ∇†∇+K

holds. Here, K is a symmetric endomorphism field, which is typically related
to curvature. If this endomorphism is bounded blow by κ on a compact subset
K ⊂M , meaning that

hE(x)[K(x)u, u] ≥ κ|u|2hE(x) ,

then mirroring the argument in Exercise 2., we obtain that D is coercive at
infinity.

Lemma 6.12. D is coercive at infinity iff there does not exist a sequence (un) ⊂
C∞

cc (M,E) satisfying

(I) ‖un‖L2(M,E) = 1.

(II) limn→∞‖Dun‖L2(M,F ) = 0.

(III) For all K̃ ⊂ M compact there is a (large) number NK̃ s.t. for all n ≥ NK̃

we have spt(un) ∩ K̃ = ∅.

Proof. We prove the statement by the equivalent contrapositive. That is, we show
that D is not coercive at infinity if and only if such a sequence as stated exists.

First, let us assume that D is not coercive at infinity. Let K1 ⊂ K2 ⊂ · · · ⊂ M be
an exhaustion of M with Kj compact. By our assumption that D is not coercive at
infinity, for each j ∈ N there is a vj ∈ C∞

c (M,E) such that spt(vj) ∩Kj = ∅ and

‖vj‖ ≥ j‖Dvj‖ .



6.1 The relative index theorem 187

Let uj := vj/‖vj‖ so that ‖uj‖ = 1. This shows (I) and (III). Moreover,

‖Duj‖ ≤ 1

j

and so ‖Duj‖ → 0 as j → ∞. This establishes (III).

To prove the converse, suppose such a sequence exists. Then, it is easy to see that
Definition 6.10 is violated.

Proposition 6.13. If B is semi-elliptically regular, i.e. B is a boundary condition
and B ⊂ H

1
2 (∂M,E). Then D is coercive at infinity iff DB has finite dimensional

kernel and closed range.

Proof. a) Let D be coercive at infinity, and let un be a bounded sequence in
dom(DB) s.t. Dun → v. We prove that, possibly on passing to a subsequence,
there exists u ∈ dom(DB) such that Du = v.

Let K ⊂ M a compact subset from the definition, and let χ ∈ C∞
c (M, [0, 1]) with

χ = 1 on K and K ′ := spt(χ). Similarly, let χ̃ ∈ C∞
c (M, [0, 1]) with χ̃ = 1 on K ′.

SinceB is elliptically regular, from Proposition hyperref[itm:ellBCfromBoundary3]5.1 (III),
we obtain that dom(DB) ⊂ H1

loc(M,E). Therefore, fixing a connection ∇ on E,

‖u‖H1(K′,E) ≤ ‖∇(χ̃u)‖L2(M,E) + ‖χ̃u‖L2(M,E)

≲ ‖DB(χ̃u)‖L2(M,F ) + ‖χ̃u‖L2(M,E)

(6.1)

for all u ∈ dom(DB). Now, recall that

DB(χu) = χDBu+ σD(·, dχ)u ,

and sptσD(·, dχ) ⊂ K ′. Therefore,

‖χ(um − un)‖L2(M,E) ≤ ‖χ(um − un)‖H1(K′,E)

≤ ‖D(χ̃χ(um − un))‖L2(M,F ) + ‖χ̃χ(um − un)‖L2(M,E)

≲ ‖χDB(um − un)‖L2(K′,F ) + ‖σD(·, dχ)(um − un)‖L2(K′,E)

+ ‖χ(um − un)‖L2(K′,E)

≲ ‖DB(um − un)‖L2(M,F ) + ‖χ(um − un)‖L2(K′,E)

+ ‖χ(um − un)‖L2(K′,E)

≲ ‖DB(um − un)‖L2(M,F ) + ‖χ(um − un)‖L2(K′,E) ,

where we used (6.1) in the second inequality and that χ̃ = 1 on sptχ = K ′.

By hypothesis, ‖DB(um − un)‖L2(M,F ) → 0 as m,n → ∞. It remains to obtain
convergence of the term ‖χ(um − un)‖L2(K′,E). Note that, since K ′ is compact,
H1(K ′, E) embeds compactly into L2(K ′, E). Since χun ∈ H1(K ′, E), we can pass
to a subsequence and obtain uK′ ∈ L2(K ′, E) such that un → uK′ . Therefore, on
passing to a subsequence, we obtain that ‖(χum − un)‖L2(K′,E) → 0 as m,n→ ∞.
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We now fix this subsequence, and we slightly abuse denoting it also by un. We
compute

‖um − un‖L2(M,E) ≤ ‖χ(um − un)‖L2(M,E) + ‖(1− χ)(um − un)‖L2(M,E)

≲ ‖χ(um − un)‖L2(K′,E) + ‖D((1− χ)(um − un))‖L2(M,F )

≤ ‖χ(um − un)‖L2(K′,E) + ‖σD(·, dχ)(um − un)‖L2(M,E)

+ ‖(1− χ)D(um − un)‖L2(M,F )

≤ ‖χ(um − un)‖L2(K′,E) + ‖D(um − un)‖L2(M,F ) ,

where in the second inequality, we used the coercive at infinity property since spt(1−
χ)(un−um) ⊂M \K. From our earlier estimate, along with the fact that Dun → v,
we obtain that the right hand side, and hence ‖um − un‖L2(M,E) → 0 as m,n→ ∞.
Therefore, we obtain u ∈ L2(M,E) s.t. um → u, Dum → v and since DB is closed,
we conclude u ∈ dom(DB) and v = DBu.

b) We prove the remaining implication by contraposition. For that, suppose D is
not coercive. Then by Lemma 6.12, we obtain un ∈ C∞

cc (M,E) which, on taking
larger and larger compact subsets Kj, have spt

(
unj

)
∩Kj = ∅. So,

〈
unj

, f
〉
→ 0 for

all f ∈ C∞
cc (M,E). Since ‖un‖ = 1, we have no convergent subsequence in dom(DB)

and in particular L2(M,E). But
∥∥DBunj

∥∥ → 0 and if DB had finite dimensional
kernel and closed range, then every bounded sequence ‖vn‖ ≤ C with DBvn → w
has a convergent subsequence. Clearly this is a contradiction and so we conclude
that DB either has infinite kernel or the range is not closed.

Corollary 6.14. If D,D† are coercive at infinity, and B is elliptically regular,
then DB is Fredholm and

ind(DB) = dim(ker(DB))− dim
(
ker
(
D†
B†

))
∈ Z .

Proof. Proposition 6.13 tells us that DB is a Fredholm operator. On application of
Lemma 5.4, we obtain

ind(DB) = dim(ker(DB))− dim(ker(D∗
B)) .

From Corollary 4.125, we have that D†
B† = D∗

B.

6.1.1 Deformations of boundary conditions

A virtue of Fredholm operators is that their index is stable under continuous de-
formations. In the context of boundary conditions, it is useful to understand how
continuous deformations of boundary conditions yield to an appropriate continuous
deformations of the operator itself. We formalise this in the following definition.
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Definition 6.15. A family of boundary conditions Bs ⊂ Ȟ(D) for s ∈ [0, 1] is a
continuous deformation from B0 to B1, if there exist isomorphisms

ϕs : B0 → Bs with ϕ0 = id

with s→ ϕs ∈ B
(
B0, Ȟ(D)

)
continuous.

Remark 6.16. The continuity condition can be more compactly written as ϕ· ∈
C0
(
[0, 1],B

(
B0, Ȟ(D)

))
.

Exercise 6.17. Suppose that Bs are elliptically regular for all s ∈ [0, 1]. Then,
ϕs ∈ B

(
B0,H

1
2 (∂M,E)

)
.

The way in which continuous deformations of boundary conditions yield continuous
deformations of operators is precisely captured in the following proposition.

Proposition 6.18. Suppose that s 7→ ϕs is a continuous deformation of boundary
conditions. Then there exists a Φs ∈ B(dom(DB0), dom(Dmax)) continuous in s
s.t. Φs dom(DB0) = dom(DBs).

Proof. Recall that dom(Dmax)⧸dom(Dmin)
∼= Ȟ(D). Since dom(DBs) ⊂ dom(Dmax)

is a closed subspace and dom(DBs)⧸dom(Dmin)
⊂ dom(Dmax)⧸dom(Dmin)

we obtain
that

dom(DBs)⧸dom(Dmin)
∼= Bs

in the sense of Banach spaces with the constant in the isomorphism independent of
Bs.

Now,

dom(DBs)
∼= dom(DBs)⧸dom(Dmin)

⊕ dom(Dmin)

∼= Bs ⊕ dom(Dmin)
∼= ϕs(B0)⊕ dom(Dmin)
∼= B0 ⊕ dom(Dmin)

∼= dom(DB0)⧸dom(Dmin)
⊕ dom(Dmin)

∼= dom(DB0)⊕ dom(Dmin) .

In the fourth isomorphism, s 7→ ϕs is continuous and determines Φs : dom(DB0) →
dom(DBs) continuously. The conclusion follows.

Exercise 6.19. Describe the map Φs explicitly from φs.
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Corollary 6.20. Let P+ be a boundary decomposing projector. Let B be an ellip-
tically regular boundary condition, and write

B = graph
(
g|

H
1
2

)
⊕W+

via Theorem 6.7 with respect to P+. Define

ϕs : B0 = V− ⊕W+ → Bs := graph
(
sg|

H
1
2

)
⊕W+,

ϕs(v + w+) := v + sgv + w+ ,

where we recall V± ⊕W± = P±L
2(∂M,E) from Definition 6.6.

Then s 7→ ϕs : B0 → Ȟ(D) is a continuous deformation of boundary conditions
and

ind(DB0) = ind(DBs) = ind(DB) .

Proof. It is immediate from construction that s 7→ ϕs ∈ C0([0, 1],B(B0, Ȟ(D))) =

C0([0, 1],B(B0,H
1
2 (∂M,E)) and it is an isomorphism for each s. Also, ϕ0 = id and

therefore, it is a continuous deformation of boundary conditions.

Let Φs : dom(DB0) → dom(DBs) be the induced isomorphism from Prop 6.18. Then,
we DBs ◦ Φs : dom(DB0) → L2(M,E) is bounded, continuous in s, and therefore,

ind(DBs ◦ Φs) = ind(B0)

since the index is invariant under a continuous deformation. But since Φs is an iso-
morphism, the dimension of the kernel and cokernel remains unchanged, so therefore
ind(DBs) = ind(DBs ◦ Φs).

A consequence of this corollary is that we are able to relate ind(DB) to ind
(
D

P−H
1
2 (∂M,E)

)
.

If we choose A bisectorial invertible and let P+ = χ+(A), then P−

(
H

1
2

)
= BAPS(A).

Therefore, relating these two indices means in effect that we are relating the index
of a general boundary condition B to a generalised APS boundary condition given
a boundary decomposing projector P+.

We begin with the following useful technical lemma.

Lemma 6.21. Let X ⊂ Y ⊂ H be closed subspaces of a Hilbert space H. Then

H⧸X ∼= Y⧸X ⊕H⧸Y .

Proof. Since H is a Hilbert space, we find complementary subspaces (i.e., by taking
orthogonal complements) s.t.

Y = X ⊕X ′ and H = Y ⊕ Y ′ .
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Therefore,
H⧸X ∼= (Y ⊕ Y ′)⧸X ∼= (X ⊕X ′ ⊕ Y ′)⧸X ∼= X ′ ⊕ Y ′ ∼= Y⧸X ⊕H⧸Y .

Recall that we say a boundary condition B is Fredholm if DB is a Fredholm operator.

Proposition 6.22. Let B1 ⊂ B2 be Fredholm boundary conditions. Then,
dim(B2/B1) <∞ and

ind(DB2) = ind(DB1) + dim
(
B2⧸B1

)
.

Proof. The condition B1 ⊂ B2 is equivalent to DB1 ⊂ DB2 . Therefore, dom(DB1) ⊂
dom(DB2), ker(DB1) ⊂ ker(DB2) and ran(DB1) ⊂ ran(DB2). Note that the ranges
are closed because Bi are Fredholm boundary conditions.

Since these are Hilbert spaces, we find orthogonal complements

ker(DB2) = ker(DB1)⊕⊥ K and dom(DBi
) = ker(DBi

)⊕⊥ Ri .

Note that Ri
∼= ran(DBi

) via D : Ri → ran(DBi
) and therefore, R1 ⊂ R2 let

R2 = R1 ⊕⊥ R .

Therefore,

dom(DB2) = ker(DB2)⊕R2 = ker(DB1)⊕K ⊕R1 ⊕R = dom(DB1)⊕K ⊕R .

Now
B2⧸B1

∼= dom(DB2)⧸dom(DB1)
∼= K ⊕R ,

where the first isomorphism is readily verified, and the second follows from our
construction above.

We prove that B2⧸B1
is finite dimensional. It suffices to prove that K and R are

finite dimensional. First, we note that K is finite dimensional, since ker(DB2) is
finite dimensional by Fredholmness of B2.

To show R is finite dimensional, note

coker(DB1)
∼= L2(M,E)⧸ran(DB1)

∼= L2(M,E)⧸ran(DB2)
⊕ ran(DB2)⧸ran(DB1)

∼= coker(DB2)⊕R2⧸R1
∼= coker(DB2)⊕R ,

where the second isomorphism uses Lemma 6.21. By the Fredholmness of B1,
coker(DB1) is finite dimensional and hence R is finite dimensional.

Now we prove the index formula in the conclusion. We simply calculate:

ind(DB2) = dim(ker(DB2))− dim(coker(DB2))

= dim(ker(DB1)) + dim(K)− dim(coker(DB1)) + dim(R)

= ind(DB1) + dim(K ⊕R)

= ind(DB1) + dim
(
B2⧸B1

)
.
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Theorem 6.23. Let P+ be a boundary decomposing projector, B elliptically reg-
ular and let W± be the subspaces arising from the graphical decomposition of B
with respect to P+ in Definition 6.6. Assume further that D,D† are coercive at
infinity. Then letting B− := P−H

1
2 (∂M,E), we have that

ind(DB) = ind
(
DB−

)
+ dim(W+)− dim(W−) ,

Proof. Using Theorem 6.7, we write

B = graph(g|
H

1
2
)⊕W+

where P±Ȟ(D) = V±⊕W±. Let B0 := V−⊕W+ as in Corollary 6.20 and from there,
we obtain

ind(DB) = ind(DB0) .

Now let us consider B− ⊕W+, which is an elliptically regular boundary condition
since W+ ⊂ H

1
2 is finite dimensional and B− = P−iH

1
2 (∂M,E). Since B−⊕W+ ⊃ B0

and
B− ⊕W+⧸B0

= (V− ⊕W− ⊕W+)⧸(V− ⊕W+)
∼= W− ,

using Proposition 6.22,

ind
(
DB−⊕W+

)
= ind(DB0) + dim(W−) .

Also, B− ⊂ B− ⊕W+ and therefore,

ind
(
DB−⊕W+

)
= ind(B−) + dim(W+) .

Combining these two equations, we get

ind(DB0) + dim(W−) = ind
(
DB−

)
+ dim(W+)

which is the formula appearing in the conclusion.

Remark 6.24. This allows us to understand and compute the index of a gen-
eral elliptically regular boundary condition via P−H

1
2 (∂M,E) of any boundary

decomposing projector P+ of our choice. We will see later, that the spaces
W+ and W− can be explicitly described as W+ = B ∩ P+

(
H− 1

2 (∂M,E)
)

and

W− ∼= B⊥ ∩ P∗
−

(
H− 1

2 (∂M,E)
)

.

6.1.2 Splittings and decompositions

In this subsection, we consider how the index of an operator on a boundaryless
manifold can be related to an induced operator on this manifold by cutting along
a hypersurface to produce a manifold with boundary.To fix notation, let M be a
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connected manifold with ∂M = ∅. Let N ⊂M be a two sided compact hypersurface
in M (i.e. N has a trivial normal bundle). Then we can cut M along N , to obtain
a manifold

M ′ := (M \N) ∪ (N1 tN2) ,
where N1 = N , N2 = −N (i.e. with opposite orientation) and with ∂M ′ = N1 tN2.

Remark 6.25. As the image shows, cutting along N need not necessarily force
M ′ to be disconnected.

Given a density µ on M and bundles E,F → M , there are the naturally and
canonically induced objects µ′, E ′, F ′ via pullback to M ′. If D ∈ Diff1(E,F ), then
we obtain D′ ∈ Diff1(E

′, F ′).

Proposition 6.26. We have

L2(∂M ′, E) = L2(N1, E)⊕⊥ L2(N2, E) = L2(N,E)⊕⊥ L2(N,E) .

Suppose that A0 is an adapted boundary operator on N1 = N . Then,−A0 is an
adapted boundary operator on N2 and A = A0 ⊕ −A0 is an adapted boundary
operator on ∂M ′ = N1 tN2. Moreover,

Ȟ(D′) = ȞA(D) =
(
χ−(A0)H

1
2 (N,E)⊕ χ+(A0)H

− 1
2 (N,E)

)
⊕
(
χ+(A0)H

1
2 (N,E)⊕ χ−(A0)H

− 1
2 (N,E)

)
.

Proof. We leave the majority of these assertions as an exercise, only noting that

ȞA(D) =
(
χ−(A0)H

1
2 (N1, E)⊕ χ+(A0)H

− 1
2 (N2, E)

)
⊕
(
χ−(−A0)H

1
2 (N,E)⊕ χ+(−A0)H

− 1
2 (N,E)

)
,

from which the formula for Ȟ(D) follows.
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Lemma 6.27. D,D† are complete and coercive at infinity iff D′ and (D′)† are.

Proof. This follows from Definition 6.10 using that N is compact. We leave the
verification of this assertion as an exercise.

Definition 6.28 (Matching condition). The boundary condition

BM :=
{
(u, u)

∣∣∣ u ∈ H
1
2 (N,E)

}
is called the matching condition.

The following is of paramount importance. It also demonstrates the usefulness and
power of the graphical decomposition.

Lemma 6.29. BM is elliptically regular.

Proof. Fix A0, an invertible bisectorial adapted boundary operator. In light of
Proposition 6.26, define:

V− := χ−(A0)L
2(N,E)⊕ χ+(A0)L

2(N,E) ,
V+ := χ+(A0)L

2(N,E)⊕ χ−(A0)L
2(N,E) ,

W± := {0} .

Moreover, define g : V− → V+ by

g =

(
id

id

)
.

Then,

graph
(
g|

H
1
2

)
=

{(
u
v

)
+ g

(
u
v

) ∣∣∣∣ u, v ∈ H
1
2 (N,E)

}
=

{(
u
v

)
+

(
v
u

) ∣∣∣∣ u, v ∈ H
1
2 (N,E)

}
=

{(
u+ v
u+ v

) ∣∣∣∣ u, v ∈ H
1
2 (N,E)

}
= BM .

By Theorem 6.7, we have that BM is elliptically regular.
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Lemma 6.30. Let A0 be an invertible bisectorial adapted boundary operator on
N , which means that A := A0⊕(−A0) is an invertible bisectorial adapted boundary
operator on ∂M = N1 tN2. Then

BAPS(A) = H
1
2 (N,E)

and
ind
(
D′
BM

)
= ind

(
DBAPS(A)

)
.

Proof. We have

BAPS(A) = χ−(A)H
1
2 (∂M,E)

= χ−(A0 ⊕ (−A0))H
1
2 (N1 tN2, E)

= χ−(A0)H
1
2 (N1, E)⊕ χ−(−A0)H

1
2 (N2, E)

= χ−(A0)H
1
2 (N,E)⊕ χ+(A0)H

1
2 (N,E)

= H
1
2 (N,E) .

Now, for the choices of V± used in Lemma 6.29, namely Let V± := χ±(A0)L
2(N1, E)⊕

χ∓(A0)L
2(N2, E) and for g as defined there, define

Bs
M := graph

(
sg|

H
1
2

)
.

Clearly this is a continuous deformation of BM to B0
M = BAPS(A) and so by Corol-

lary 6.20, the conclusion follows.

Theorem 6.31 (Splitting theorem). Let M,µ,E, F and M ′, µ′, E ′, F ′ be as
above, and D ∈ Diff1(E,F ) elliptic. Suppose that D,D′ are complete and co-
ercive at infinity.

Suppose that (on identifying H
1
2 (Ni, E) with H

1
2 (N,E)) that

B1 ⊕B2 = H
1
2 (N,E) .

Then
ind(D) = ind

(
D′
B1⊕B2

)
.

Proof. Let BM be the matching condition as defined in Definition 6.28. On identi-
fying the pullback sections, say via a map Φ from E to E ′ , we get

dom(DBM
◦ Φ) = dom(D) .

Moreover,
ind(DBM

) = ind(D) .
From Lemma 6.30

ind
(
D′
BM

)
= ind

(
D′

H
1
2 (N,E)

)
= ind

(
D′
B1⊕B2

)
.
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Example 6.32. 1. On fixing an invertible bisectorial adapted boundary oper-
ator A0 on N , the canonical choices are B1 = χ−(A0)H

1
2 (N,E) and B2 =

χ+(A0)H
1
2 (N,E). Clearly, B1 ⊕B2 = H

1
2 (N,E) = BAPS(A).

2. If D admits a self-adjoint adapted boundary operator on N , we can let B1 ⊂
H

1
2 (N,E) be elliptically regular on N1 and B2 := B⊥,L2

1 ∩H
1
2 (N,E) considered

as a boundary condition on N2.

Now choose A0 invertible self-adjoint adapted boundary operator, by sub-
tracting a small number from the self-adjoint boundary adapted operator we
assumed exists. Set

V− := V−,1 ⊕ V−,2 ,
V+ := V+,1 ⊕ V+,2 ,
V±1 := χ±(A0)L

2(N,E)

V±,2 := χ±(−A0)L
2(N,E) = χ∓(A0)L

2(N,E) .

Write

B1 = W+,1 ⊕ graph(g1 : V−,1 → V+,1) ∩ H
1
2 (N,E) ,

B2 = W+,2 ⊕ graph(g2 : V−,2 → V+,2) ∩ H
1
2 (N,E) .

But since B1 ⊥ B2 in L2, we have that V±,2 = V∓1, W±,2 = W∓,1 and g2 = −g∗1.

The adjoint boundary condition for B1⊕B2 is B2⊕B1. Therefore, B1⊕B2 =
H

1
2 (N,E) and so Theorem 6.31 applies.

The splitting theorem applies in a particular and useful way when N separates
M , leading to a decomposition theorem. That is, suppose M = M ′ ∪M ′′ where
N = ∂M ′ = ∂M ′′. In this case, we obtain induced objects E ′, E ′′, F ′, F ′′ et cetera,
on M ′ and M ′′ respectively,

Corollary 6.33 (Decomposition). Let A0 be an invertible bisectorial adapted
boundary operator on N pointing into ∂M ′. Assume D,D† are coercive at
infinity. Then on letting B1 = χ−(A0)H

1
2 (N,E) = χ−(A0)H

1
2 (∂M ′, E) and

B2 = χ+(A0)H
1
2 (N,E) = χ−(−A0)H

1
2 (∂M ′′, E), we obtain that

ind(D) = ind
(
D′
B1

)
+ ind

(
D′′
B2

)
.

Proof. Exercise, follows from D = D′ ⊕D′′.

6.1.3 The Φ-relative index and relative index theorems

Relative index theorems are index formulas measuring the difference of the indices
of two operators living on two distinct manifolds, which can be identified outside of
a compact set. These theorems were originally proved by Gromov-Lawson in [23],
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motivated by the study of positive scalar curvature metrics on closed manifolds.
Their method was to construct a noncompact manifold with their original closed
manifold as a boundary, apply the relative index theorem to the Spin-Dirac operator,
and use the Weitzenböck identity where scalar curvature appears to study the space
of positive scalar curvature metrics.

The methods used by Gromov-Lawson are quite different to those that we present
here. Our perspective, using boundary value problems, emerges from the work of
Bär-Ballmann in [10], where they generalised the theorems of [23] to Dirac-type
operators. In our exposition, we will drop this assumption altogether to prove these
theorems for general first-order elliptic operators.

In the previous subsections, we have developed the technical tools necessary to prove
the relative index theorems. However, the statement of these theorems require us to
relate two manifolds, bundles and operators outside a closed subset. We formalise
this notion in the following definition.

Definition 6.34. Let M1,M2 be manifolds and
(
Ei, h

Ei
)
,
(
Fi, h

Fi
)
→Mi Hermi-

tian vector bundles. Let Di ∈ Diff1(Ei, Fi) and Ki ⊂ Mi a closed subset. Then
we say that D1 and D2 agree outside K1, K2 if they are related by vector bundle
isometries E1|M1\K1

∼= E2|M2\K2
and F1|M1\K1

∼= F2|M2\K2
. Explicitly, we require

the following.

(I) There is a diffeomorphism f :M1 \K1 →M2 \K2.

(II) There exist vector bundle isometries

IE : E1|M1\K1
→ E2|M2\K2

and IF : F1|M1\K1
→ F2|M2\K2

over f . That is, IE and IF are fibrewise linear isometries s.t. the following
diagrams commute:

E1|M1\K1

IE−→ E2|M2\K2

↓ ↓
M1 \K1

f−→ M2 \K2

and
F1|M1\K1

IF−→ F2|M2\K2

↓ ↓
M1 \K1

f−→ M2 \K2

.

(III) The operators D1 and D2 are related by IE, IF and f . Explicitly,

IF ◦D1u ◦ f−1 = D2

(
IE ◦ u ◦ f−1

)
for all u ∈ C∞(M1 \K1, E1).
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Theorem 6.35 (Φ-relative index theorem). Let Mi, Ei, Di, ∂Mi = ∅ with
compact Ki ⊂Mi such that D1, D2 agree outside of K1, K2 as in in Definition 6.34.
Additionally, let µi be densities on Mi such that µ1 = f ∗µ2 on M1\K1 and assume
that D1, D2 complete, elliptic and coercive at infinity.

Suppose that there exist a compact hypersurfaces N1 separating M1 =M ′
1∪M ′′

1 with
∂M ′

1 = ∂M ′′
1 = N1 and K1 ⊂ M̊ ′

1. Then, N2 := f(N1) separates M2 = M ′
2 ∪M ′′

2

and K2 ⊂ M̊ ′
2. Denote the induced operators on M ′

i and M ′′
i from Di by D′

i and
D′′
i respectively.

Fix an invertible bisectorial adapted boundary operator A to D′
1 on M ′

1, i.e. using
a transversal vector field pointing into M ′

1. Let B1 := χ−(A)H
1
2 (∂M1, E1) and B2

be identified with B1 under (IE, IF , f). Then Di, D
′
i,Bi

are Fredholm operators and

ind(D1)− ind(D2) = ind
(
D′

1,B1

)
− ind

(
D′

2,B2

)
.

Proof. Since M1 \ K1 is diffeomorphic to M2 \ K2, it is clear that N2 = f(N1)
separates M2 =M ′

2 ∪M ′′
2 and K2 ⊂ M̊ ′

2.

By Proposition 6.26, since A is an adapted boundary operator on ∂M ′
1, we obtain

that −A is an adapted boundary operator on ∂M ′′
1 . On setting B′

1 := B1

B′′
1 := χ+(A)H

1
2 (∂M ′′

1 , E) = χ+(A)H
1
2 (N1, E)

from Corollary 6.33, we obtain

ind(D1) = ind
(
D′

1,B′
1

)
+ ind

(
D′′

1,B′′
1

)
.

Let B′
2 := B2 and B′′

2 be the boundary condition B′′
2 pulled across to ∂M ′′

2 via
(IE, IF , f), we get

ind(D2) = ind
(
D′

2,B′
2

)
+ ind

(
D′′

2,B′′
2

)
.
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Since D1 and D2 agree outside M ′
1 and M ′

2 we get

ind
(
D′′

1,B′′
1

)
= ind

(
D′′

2,B′′
2

)
.

By taking the difference we obtain the conclusion.

We now want to express the right hand side of this index theorem in terms of index
densities for D1 and D2 respectively. For that, we need to embed the manifold M ′

i

inside a larger closed and fixed manifold, extending Di appropriately.

Lemma 6.36. Let M1 and M2 be two compact manifolds with boundary s.t.
D1, D2 elliptic agree outside Ki ⊂ M̊i. Then there are M̃i compact with ∂M̃i = ∅
s.t. the following hold.

(I) Mi ⊂ M̃i,

(II) Ei ⊂ Ẽi, hẼi smooth with hẼi |Mi
= hEi,

(III) D̃i elliptic s.t. Di and D̃1 and D̃2 agree outside K1, K2,

(IV) D̃i|Ki
= Di|Ki

.

Proof. Take Mi and set M2nd
1 := M1 as the second copy of M1. We will glue this

second copy M2nd
1 to Mi, regardless of whether i = 1 or i = 2. That is, define

M̃i :=Mi ∪Ui
M2nd

1

identifying inside Ui :=Mi \Ki, which by hypothesis is identified with M1 \K1 via
a diffeomorphism.

By hypothesis, the Di agree on Ui open and containing ∂Mi. In Ui, D1 and D2

agree through identification by (IE, IF , f). So on doubling, we keep the smooth
coefficients and obtain D̃i.

Similarly, hẼi have smooth coefficients also. Therefore, the conclusions as stated
follow.
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Theorem 6.37 (Relative index theorem). Let M1,M2 be measured manifolds
without boundary, Di ∈ Diff1(Ei, Fi) elliptic and complete, and D1, D2 agree out-
side compact K1, K2, and µ1 = f ∗µ2. Suppose further that there is a compact
hypersurface N1 ⊂M1 s.t. M1 =M ′

1 ∪M ′′
1 with ∂M ′

1 = ∂M ′′
1 = N1 with K1 ⊂ M̊1.

Then D1 is Fredholm iff D2 is Fredholm and in that case

ind(D1)− ind(D2) =

∫
K1

α0,D1(x) dµ1(x)−
∫
K2

α0,D2(y) dµ2(y) ,

where α0,Di
is the local index density for Di inside of Mi.

Proof. Since Ki are compact, applying Corollary 6.14 to a manifold without bound-
ary gives that Di are Fredholm iff Di are coercive at infinity, say w.r.t. a set K̃i (c.f
Definition 6.10). But Ki ∪ K̃i is still compact and Di are coercive at infinity w.r.t.
Ki ∪ K̃i and hence it is easy to see that D1 is Fredholm iff D2 is Fredholm since
D1, D2 agree outside the compact set Ki ∪ K̃i.

Now from Theorem 6.35, we obtain N2 = f(N1) separates M2 = M ′
2 ∪ M ′′

2 with
K2 ⊂ M̊ ′

2. Let D′
i and D′′

i be the induced operators on M ′
i and M ′′

i respectively.
Choosing B1 := χ−(A)H

1
2 (N,E) for an invertible adapted boundary operator A

on N1, and with B2 pulled back to N2 = f(N1) via (IE, IF , f), we obtain from
Theorem 6.35 that

ind(D1)− ind(D2) = ind
(
D′

1,B1

)
− ind

(
D′

2,B2

)
.

On application of Lemma 6.36, we obtain M̃i containing M ′
i and D̃i. But M̃i is

closed, D̃i is elliptic on a closed manifold, so by Corollary 6.33,

ind
(
D̃i

)
= ind

(
D̃′
i,Bi

)
+ ind

(
D̃′′
i,B′′

i

)
,

where B′′
1 := χ+(A)H

1
2 (N,E) and B′′

2 is B′′
1 identified on M̃ ′′

2 through (ĨE, ĨF , f̃)
given by Lemma 6.36.

By construction, D̃1 and D̃2 agree outside of K1, K2. In particular, D̃1 and D̃2 agree
on M̃ ′′

1 and M̃ ′′
2 . Therefore

ind
(
D̃′′

1,B′′
1

)
= ind

(
D̃′′

2,B′′
2

)
,

and
ind(D1,B1)− ind

(
D2,B′

2

)
= ind

(
D̃1

)
− ind

(
D̃2

)
.

Since M̃i are closed and D̃i are first-order elliptic, we can apply Atiyah-Singer index
theorem to obtain

ind
(
D̃i

)
=

∫
M̃i

α0,D̃i
(x) dµi(x)

=

∫
Ki

α0,D̃i
(x) dµi(x) +

∫
M̃i\Ki

α0,D̃i
(x) dµi(x) ,
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where α0,D̃i
is the constant term in asymptotic expansion of tr(e−τD̃∗

i D̃i − e−τD̃iD̃
∗
i ).

The operators D1, D2 agree outside K1, K2 and so certainly D̃1, D̃2 agree outside
K1, K2. Moreover, since we assume µ2 = f ∗µ1,∫

M̃1\K1

α0,D̃1
(x) dµ1(x) =

∫
M̃2\K2

α0,D̃2
(y) dµ2(y) .

Also, D̃i = Di on Ki, so
α0,D̃i

(x) = α0,Di
(x)

for x ∈ Ki. Hence, we conclude

ind
(
D̃1

)
− ind

(
D̃2

)
=

∫
K1

α0,D1(x) dµ1(x)−
∫
K2

α0,D2(y) dµ2(y) .

Remark 6.38. 1. This theorem demonstrates the enormous applicability of
the heat kernel proof of the Atiyah-Singer index theorem. Since the index
densities are pointwise, we are able to localise and exploit cancellations.
The topological approach to the Atiyah-Singer index theorem would not
lend itself to such a calculation as we have done here.

2. If we were to dispense with using Lemma 6.36, we would need to directly
compute ind

(
D′
i,Bi

)
. In the situation where A1 := A is self-adjoint, we

can accomplish this using the Atiyah-Patodi-Singer index theorem, The-
orem 5.27. By pulling across A to M ′

2, to obtain A2 we have that
dimkerA2 = dimkerA1 and ηA1(s) = ηA2(s). Therefore, these terms cancel,
and we obtained the stated relative index formula. The advantage of using
the Atiyah-Singer index theorem is that we do not need to make any extra
assumptions on Di, as we would need to for using the Atiyah-Patodi-Singer
index theorem.

3. We have asserted multiple times that the L2-graphical decomposition is at
the heart of the proof of these relative index theorems. It is always true,
without any additional assumptions, that

ind(D) = ind
(
D′
BM

)
.

However, in order to compute the index on the right, we needed to deform
BM to the APS condition with respect to A = A0 ⊕ (−A0). In order to do
so, we needed to assert that BM is an elliptically regular boundary condition
and then represent it in a way that lends itself to deformation. It is in
this seemingly trivial point where the L2-graphical decomposition becomes
of paramount importance.

This is, in fact, a deep and significant achievement. Classically, boundary
conditions that were considered were elliptic, which traditionally meant that
they were obtained as f

B = PH
1
2 (∂M,E)
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where P is a pseudo-differential projector of order 0 satisfying a certain
ellipticity condition with respect to a boundary decomposing projector. Such
an operator is pseudo-local, meaning that it does not increase the support
of a section by ‘too much’. However, it is clear that a matching condition
BM cannot be written in this way. The matching can happen in a region
where the boundaries are as far away as we like them to be, and through
matching, whatever happens at one boundary is immediately reflected in the
other. It was the genius of Bär-Ballmann in [10] to understand ellipticity,
which we call elliptic regularity, from the equivalent graphical decomposition
perspective. Through this powerful tool, the central issue lying at the heart
of these deep relative index theorems are almost trivially resolved.

6.2 Proof of Theorem 6.7

We now return to the matter of proving Theorem 6.7, which states that the L2-
graphical decomposition for B, as defined in Definition 6.6 is equivalent to the
elliptic regularity of B. The proof of this theorem contains many small parts, and
it is advantageous to organise it in a way which makes the conceptual ideas of the
proof clear. First, we prove this following abstract lemma regarding the behaviour of
projectors on Hilbert spaces which are densely contained in each other. To motivate
this lemma, we note that in application, we take H0 = H

1
2 (∂M,E), H = L2(∂M,E)

and H1 = H− 1
2 (∂M,E).

Lemma 6.39. Let H0 ⊂ H ⊂ H1, be densely and continuously embedded Hilbert
spaces. Suppose that 〈H0,H1〉 (a perfect pairing) with 〈·, ·〉|H0

= 〈·, ·〉H. Moreover,
suppose that H = W ⊕HW with finite dimensional W ⊂ H0. Let PHW ,W : H → H
be the projection to HW along W . Then we have the following.

I) PHW ,W |H0
: H0 → H0 is bounded and PHW ,WH0 = HW ∩H0.

II) PHW ,W |∗H0
: H1 → H1 (adjoint with respect to 〈H0,H1〉) satisfies

(HW )∗1 := PHW ,W |
∗

H0
H1 = W⊥,⟨H0,H1⟩

and (W )∗1 := PW,HW
|
∗

H0
H1 = (HW ∩H0)

⊥,⟨H0,H1⟩ .

III) If further (W ∗)1 ⊂ H0, then with H∗
W = P∗

HW ,WH (the adjoint projector in
H), we have that H∗

W ∩H0 is dense in (H∗
W )1 and

PHW ,W |∗H0
= PHW ,W

H1
= P∗

HW ,W |H0

H1

.

Proof. a) Ad I).
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Fix u ∈ H0 and write u = PHW ,Wu+ PW,HW
u. Then,

PHW ,Wu = u− PW,HW
u ∈ H0 +H0 ⊂ H0 .

By definition, PHW ,Wu ∈ HW , and so, PHW ,Wu ∈ HW∩H0. This proves PHW ,WH0 =
HW ∩H0.

Now we show PHW ,W |H0
∈ B(H0). For that, first note that since W is finite dimen-

sional, ‖PW,HW
u‖H0

' ‖PW,HW
u‖H. Therefore,

‖PHW ,Wu‖H0
≲ ‖u‖H0

+ ‖PW,HW
u‖H0

≲ ‖u‖H0
.

b) Ad II).

Since we are only considering Hilbert spaces, by Proposition 2.62, PHW ,W |∗H0
: H1 →

H1 is a bounded projector. Now,

u ∈ W⊥,⟨H0,H1⟩ ⇔ ∀w ∈ W : 0 = 〈u,w〉

⇔ ∀h0 ∈ H0 : 0 =
〈
u,PW,HW

|H0
h0

〉
⇔ ∀h0 ∈ H0 : 0 =

〈
PW,HW

|
∗

H0
u, h0

〉
⇔ u ∈ ker

(
PW,HW

|
∗

H0

)
= PHW ,W |

∗

HH1 ,

where the second equivalence follows from W ⊂ H0 and the last from the fact that
idH1 = PW,HW

|∗H0
+ PHW ,W |∗H0

.

A similar argument shows (HW ∩H0)
⊥,⟨H0,H1⟩ = PHW ,W |∗H0

H1.

c) Ad III).

Fix u ∈ H1 and by the density hypothesis, fix a sequence un ∈ H0 such that un → u.
Write

un = P∗
HW ,W |H0

un + P∗
W,HW

|H0
un .

It suffices to prove P∗
HW ,W |H0

un → u and that P∗
HW ,W |H0

un ∈ H0, where the latter
utilises the fact that (W )∗1 ⊂ H0. We leave this as an exercise.

From here on, unless otherwise stated, we fix a boundary decomposing projector
P+.

Notation 6.40. For a subspace V ⊂
⋃
α∈R H

α(∂M,E) define

V β := V ∩ Hβ(∂M,E)
∥·∥

Hβ ,

V̌ := V ∩ ȞP+(D)
∥·∥ȞP+

(D) ,

V̂ := V ∩ ĤP+(D)
∥·∥ĤP+

(D) .
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Recall that when we have a Banach space B = B1 ⊕B2, and
〈
B, B̃

〉
is reflexive, we

write B∗
1 := P∗

B1,B2
B̃ where B̃ = B∗

1 ⊕ B∗
2.

Proposition 6.41. Suppose that V± ⊕ W± = P±L
2(∂M,E) with W±,W

∗
± ⊂

H
1
2 (∂M,E) finite dimensional. Then the following hold.

I) PV±,W±⊕P∓L2|
H

1
2
: H

1
2 (∂M,E) → H

1
2 (∂M,E) is a bounded projector.

II) Hα(∂M,E) = V α
− ⊕ W− ⊕ V α

+ ⊕ W+ =
(
V ∗
−
)α ⊕ W ∗

− ⊕
(
V ∗
+

)α ⊕ W ∗
+ for

α ∈
{
−1

2
, 1
2

}
.

III) V
1
2
± is dense in V

− 1
2

± and
(
V ∗
±
) 1

2 is dense in
(
V ∗
±
)− 1

2 .

Proof. This follows from making the right choice for spaces H0, H and H1 in
Lemma 6.39, noting that P+|Hβ : Hβ(∂M,E) → Hβ(∂M,E) is a bounded projector
for β ∈

[
−1

2
, 1
2

]
. The details are left as an exercise.

Corollary 6.42. Under the hypothesis of Proposition 6.41, the L2 inner product
〈·, ·〉 extends to perfect pairings〈

P∗
±H

1
2 (∂M,E),P±H

− 1
2 (∂M,E)

〉
,

〈
P∗

±H
− 1

2 (∂M,E),P±H
1
2 (∂M,E)

〉
,〈

W ∗
±,W±

〉
,

〈
V ∗
±, V±

〉
,

〈(
V ∗
±
)− 1

2 , V
1
2
±

〉
,

〈(
V ∗
±
) 1

2 , V
− 1

2
±

〉
,〈

ĤP+(D), ȞP+(D)
〉

.

Proof. This is an immediate consequence of Proposition 2.63, combined with the
assertions of Proposition 6.41.

As a consequence of this corollary, for the purposes of legibility in the coming sec-
tions, we make the following notational remark.

Notation 6.43. For V ⊂ Hα(∂M,E), we let V ⊥,H−α be the annihilator w.r.t.
〈Hα(∂M,E),H−α(∂M,E)〉 induced from L2. Similarly for V ⊂ ȞP+(D) we write
V ⊥,ĤP+

(D) and for V ⊂ ĤP+(D) we write V ⊥,ȞP+
(D) to be the annihilators w.r.t.〈

ȞP+(D), ĤP+(D)
〉

.
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6.2.1 L2-graphical decomposability implies elliptical regularity

Having developed some technical tools, the easier direction in the proof of Theo-
rem 6.7 is that the L2-graphical decomposition yields elliptic regularity for a bound-
ary condition B.

Proof of Theorem 6.7, L2-graphical decomposability implies ellpitic regularity. By as-
sumption that B is L2-graphically decomposable, we write

B = graph
(
g|

H
1
2

)
⊕W+ ⊂ H

1
2 (∂M,E) .

To show that B is elliptically regular, we need to show that B† ⊂ H
1
2 (∂M,F ).

However, this is equivalent to proving that

B⊥,ĤP+
(D) ⊂ H

1
2 (∂M,E) .

We note that

B⊥,ĤP+
(D) = B⊥,H− 1

2 ∩ ĤP+(D)

= W⊥,H− 1
2

± ∩ graph(g|
H

1
2
)⊥,H

− 1
2 ∩ ĤP+(D)

and so we first compute W⊥,H− 1
2

± and graph(g|
H

1
2
)⊥,H

− 1
2 .

Recall from Definition 6.6 that L2(∂M,E) = V−⊕W−⊕V+⊕W+ and g : V− → V+.
From Proposition 6.41, H 1

2 (∂M,E) = V
1
2
− ⊕W−⊕V

1
2
+ ⊕W+. Using Lemma 6.39, we

obtain that
W⊥,H− 1

2

± = W ∗
∓ ⊕

(
V ∗
−
)− 1

2 ⊕
(
V ∗
+

)− 1
2 .

Similarly,

graph(g|
H

1
2
)⊥,H

− 1
2 =

{
v + gv

∣∣∣ v ∈ V
1
2
−

}⊥,H− 1
2

= W ∗
− ⊕W ∗

+ ⊕
{
u− g∗u

∣∣∣ u ∈
(
V ∗
+

)− 1
2

}
.

Therefore,

B⊥,H− 1
2 = W⊥,H− 1

2

+ ∩ graph
(
g|

H
1
2

)⊥,H− 1
2

= W ∗
− ⊕

{
u− g∗u

∣∣∣ u ∈
(
V ∗
+

)− 1
2

}
and hence

B⊥,ĤP+
(D) = B⊥,H− 1

2 ∩ ĤP+(D)

= B⊥,H− 1
2 ∩ P∗

−H
− 1

2 (∂M,E)⊕ P∗
+H

1
2 (∂M,E)

= W ∗
− ⊕

{
u− g∗u

∣∣∣ (V ∗
+

) 1
2

}
.

Since by assumption g∗
((
V ∗
+

) 1
2

)
⊂
(
V ∗
−
) 1

2 ⊂ H
1
2 (∂M,E), we obtain thatB⊥,ĤP+

(D) ⊂
H

1
2 (∂M,E).
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6.2.2 Elliptical regularity implies L2-graphical decomposability

Showing that an elliptically regular boundary condition has an L2-graphical decom-
position requires a lot more effort. The difficulty is that we have to construct the
decomposition from having B. We will accomplish this in three steps. First, we de-
fine the space and prove that it has the required properties (c.f. Proposition 6.46).
Then, we show that the spaces interact nicely with the boundary condition (c.f.
Proposition 6.47) Lastly, we prove the theorem, where the main point is to con-
struct the map g.

Throughout this subsection, we assume that B is elliptically regular. That is, we
assume that B is a boundary condition and

B,B⊥,ĤP+
(D) ⊂ H

1
2 (∂M,E) .

For the first step, as an ansatz, we define the following spaces:

W ∗
− := P∗

−L
2(∂M,E) ∩B⊥,ĤP+

(D) ,
W+ := P+L

2(∂M,E) ∩B ,

V ∗
− := P∗

−L
2(∂M,E) ∩

(
W ∗

−
)⊥,L2

,

V+ := P+L
2(∂M,E) ∩W⊥,L2

+ .

(6.2)

Using these, define:

W− := P−W
∗
− ,

W ∗
+ := P∗

+W+ ,
V− := P−V

∗
− ,

V ∗
+ := P∗

+V+ .

(6.3)

First, we note a couple of abstract results that we will require in computations.

Lemma 6.44. Consider Hilbert spaces H = H0 ⊕H1 = H0 ⊕H′
1. Then

PH′
1,H0

|H1
: H1 → H′

1

is a Banach space isomorphism.

Proof. Exercise.

Lemma 6.45. Let B1 ⊂ B2 be Banach-spaces s.t. for all u ∈ B1 we have

‖u‖B2
≲ ‖u‖B1

.

If B3 ⊂ B2 is closed, then B3 ∩ B1 is closed in B1.
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Proof. Exercise.

The first step in our proof is the following proposition, which gives us the properties
required of the spaces above to satisfy Definition 6.6.

Proposition 6.46. For the spaces defined in (6.2) and (6.3), the following hold.

I) P−B and P∗
+B

⊥,ĤP+
(D) are dense subspaces of H 1

2 (∂M,E).

II) W±,W
∗
± ⊂ H

1
2 (∂M,E) are finite dimensional.

III) All spaces we have defined above are closed in L2(∂M,E).

IV) P±L
2(∂M,E) = V± ⊕W± and P∗

±L
2(∂M,E) = V ∗

± ⊕W ∗
±.

Proof. First we note that B ⊂ ȞP+(D) is a closed subspace since it is a boundary
condition. Also, by hypothesis, B ⊂ H

1
2 (∂M,E). Now, recall that the inclusion

H
1
2 (∂M,E) ↪→ ȞP+(D) is continuous. Therefore, by Lemma 6.45, B is closed in

H
1
2 (∂M,E).

Equivalently, this is saying that
(
B, ‖·‖

H
1
2

)
and

(
B, ‖·‖ȞP+

(D)

)
are both Banach

spaces. Moreover, we have that the inclusion
(
B, ‖·‖

H
1
2

)
↪→
(
B, ‖·‖ȞP+

(D)

)
is a

bounded bijection. Therefore, the open mapping theorem says that the inclusion is
continuously invertible. This yields

‖u‖
H

1
2
' ‖u‖ȞP+

(D)

for all u ∈ B. Hence,

‖u‖
H

1
2
' ‖u‖ȞP+

(D) ' ‖P−u‖H 1
2
+ ‖P+u‖H− 1

2
.

Now
P+ : B ⊂ H

1
2 (∂M,E) → H

1
2 (∂M,E)

compact
↪−−−−→ H− 1

2 (∂M,E) .
That is, P+|B : B → H− 1

2 (∂M,E) is a compact map. By Lemma 5.5, we obtain
ran
(
P−|B

)
is closed in H

1
2 (∂M,E) and ker

(
P−|B

)
is finite dimensional. But note

that

ker
(
P−|B

)
= {u ∈ B | P−u = 0}

=
{
u ∈ B

∣∣ u ∈ P+L
2(∂M,E)

}
= B ∩ P+L

2(∂M,E) = W+.

Similar calculation yields that P∗
+B

⊥,ĤP+
(D) is closed and W ∗

+ is finite dimensional.
This proves I) and part of II).

To prove the remaining parts of II), we note

L2(∂M,E) = P−L
2(∂M,E)⊕ P+L

2(∂M,E)

= P∗
−L

2(∂M,E)⊕⊥ P∗
+L

2(∂M,E) .
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By previous Lemma 6.44, we have that P∗
+ : P+L

2(∂M,E) → P∗
+L

2(∂M,E) is an
isomorphism. Therefore, W ∗

+ = P+W+ is finite dimensional, and W ∗
+ ⊂ H

1
2 (∂M,E)

since P+ : Hβ → Hβ for β ∈
[
−1

2
, 1
2

]
. Similarly W− = P−W

∗
− ⊂ H

1
2 (∂M,E) is finite

dimensional. This proves II).

We prove III) and IV). For that, first we prove that P+L
2(∂M,E) = V+ ⊕ W+.

First, L2(∂M,E) = W+ ⊕⊥ W⊥
+ . Fix u ∈ P+L

2(∂M,E) and write u = PW+,W⊥
+
u +

PW⊥
+ ,W+

u. Rearranging this, we find

u− PW+,W⊥
+
u = PW⊥

+ ,W+
u .

But by construction, W+ ⊂ P+L
2(∂M,E) and therefore,

PW⊥
+ ,W+

u ∈ W⊥
+ ∩ P+L

2(∂M,E) = V+ .

This shows P+L
2(∂M,E) = V+ ⊕W+.

A similar computation yields P∗
−L

2(∂M,E) = V ∗
− ⊕W ∗

−. Since the maps

P± : P∗
±L

2(∂M,E) → P±L
2(∂M,E) ,

P∗
± : P±L

2(∂M,E) → P∗
±L

2(∂M,E)

are isomorphisms, we obtain that all the spaces in (6.2) and (6.3) are closed in
L2(∂M,E) proving III) and also IV).

The second part we require is the following proposition.

Proposition 6.47. P−B = V
1
2
− and P∗

+B
⊥,ĤP+

(D) =
(
V ∗
+

) 1
2 .

Proof. We prove this in a number of steps.

a) Claim: W ∗
− = P∗

−H
− 1

2 (∂M,E) ∩B⊥,H− 1
2 .

Direction ‘⊂’ is clear, so we prove the reverse inclusion. Let u ∈ P∗
−H

− 1
2 (∂M,E) ∩

B⊥,H− 1
2 . In particular, we have that u ∈ ĤP+(D). Therefore,

P∗
−H

− 1
2 (∂M,E) ∩B⊥,H− 1

2 = P∗
−H

− 1
2 (∂M,E) ∩B⊥,H− 1

2 ∩ ĤP+(D)

= P∗
−H

− 1
2 (∂M,E) ∩B⊥,ĤP+

(D)

⊂ P∗
−H

1
2 (∂M,E) ∩B⊥,ĤP+

(D) ⊂ W ∗
− ,

where the last set containment follows from the fact that, by the elliptic regularity
of B, we have that B⊥,ĤP+

(D) ⊂ H
1
2 (∂M,E).

b) Claim: (P−B)⊥,P
∗
−H− 1

2
= W ∗

−.
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We simply compute:

w ∈ W ∗
− ⇔ w ∈ P∗

−H
− 1

2 (∂M,E) and ∀b ∈ B : 〈w, b〉 = 0

⇔ w ∈ P∗
−H

− 1
2 and ∀b ∈ B :

〈
P∗

−w, b
〉
= 0

⇔ w ∈ P∗
−H

− 1
2 and ∀b ∈ B : 〈w,P−b〉 = 0

⇔ w ∈ P∗
−H

− 1
2 and ∀v ∈ P−B : 〈w, v〉 = 0

⇔ w ∈ P∗
−H

− 1
2 (∂M,E) ∩ (P−B)⊥,H

− 1
2

⇔ w ∈ (P−B)⊥,P
∗
−H− 1

2 ,

where the last equivalence follows from a).

c) Claim: P−B =
(
W ∗

−
)⊥,P−H

1
2 (∂M,E).

This is immediate since from Corollary 6.42,
〈
P∗

−H
1
2 (∂M,E),P−H

− 1
2 (∂M,E)

〉
is a

perfect pairing.

d) Claim:
(
W ∗

−
)⊥,P−H

1
2

=
(
W ∗

−
)⊥,L2

∩ P−L
2(∂M,E) ∩ H

1
2 (∂M,E).

This is also readily verified.

e) Claim:
(
W ∗

−
)⊥,L2

∩ P−L
2(∂M,E) = P−

((
W ∗

−
)⊥,L2

∩ P∗
−L

2(∂M,E)
)

.

Containment ‘⊃’.

Let u ∈ P−

((
W ∗

−
)⊥,L2

∩ P∗
−L

2(∂M,E)
)

. Then u = P−u
′ for some u′ ∈

(
W ∗

−
)⊥,L2

∩
P∗

−L
2(∂M,E). Let w ∈ W ∗

− and note

〈w, u〉 = 〈w,P−u
′〉 =

〈
P∗

−w, u
′〉 = 〈w, u′〉 = 0 .

Therefore, u ∈
(
W ∗

−
)⊥,L2

. Furthermore, u ∈ P−L
2(∂M,E) and so the containment

‘⊃’ follows.

Containment ‘⊂’.

Let u ∈
(
W ∗

−
)⊥,L2

∩P−L
2(∂M,E). Applying Lemma 6.44, we find a u∗ ∈ P∗

−L
2(∂M,E)

s.t. u = P∗
−u

∗. Then, fixing w ∈ W ∗
−, we obtain

0 = 〈u,w〉 = 〈P−u
∗, w〉 =

〈
u∗,P∗

−w
〉
= 〈u∗, w〉 .

Therefore, so u∗ ∈
(
W ∗

−
)⊥,L2

and also by hypothesis u∗ ∈ P∗
−L

2(∂M,E). This shows
‘⊂’.

f) Claim: P−B = V
1
2
− .
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We compute

P−B =
(
W ∗

−
)⊥,P−H

1
2

=
(
W ∗

−
)⊥,L2

∩ P−L
2(∂M,E) ∩ H

1
2 (∂M,E)

= P−

((
W ∗

−
)⊥,L2

∩ P−L
2(∂M,E)

)
∩ H

1
2 (∂M,E)

= P−V
∗
− ∩ H

1
2 (∂M,E)

= V− ∩ H
1
2 (∂M,E)

= V
1
2
− ,

where the first equality is b), the second d), the third e) and the remaining steps
are by definitions (6.2) and (6.3).

The claim P∗
+B

⊥,ĤP+
(D) =

(
V ∗
+

) 1
2 follows by mimicking this argument mutatis mu-

tandis.

Finally, we have the required ingredients to prove the remaining direction of Theo-
rem 6.7.

Proof of Theorem 6.7, B elliptically regular implies L2-graphical decomposability . We
fix the spaces we have defined in (6.2) and (6.3). Proposition 6.46 then guarantees
that these spaces satisfy the requirements in Definition 6.6.

To prove the stated assertion, it remains to construct g : V− → V+ s.t. g|
H

1
2
V

1
2
− → V

1
2
+

with g∗|
H

1
2
:
(
V ∗
+

) 1
2 →

(
V ∗
−
) 1

2 satisfying B = graph
(
g|

H
1
2

)
⊕W+. We perform this

construction in the following steps.

a) First we construct g0 : V
1
2
− → V

1
2
+ , h0 :

(
V ∗
+

) 1
2 →

(
V ∗
−
) 1

2 and h0 : (V
∗
+)

1
2 → (V ∗

−)
1
2 .

For that, define

X− := P−|B∩W⊥,L2

+

: B ∩W⊥,L2

+ → P−B = V
1
2
− ,

X∗
+ := P∗

+|
B

⊥,ĤP+
(D)

∩(W ∗
−)

⊥,L2 : B⊥,ĤP+
(D) ∩

(
W ∗

−
)⊥,L2

→ P∗
+B

⊥,ĤP+
(D) .

We show that X− is a bounded isomorphism with bounded inverse (i.e. a Banach
space isomorphism).

i) Claim: X− is surjective.

Let x ∈ P−B and write x = P−b with b ∈ B. Then

x = P−b = P−

(
P
W⊥,L2

+ ,W+
b+ P

W+,W
⊥,L2

+

b
)
= P−PW⊥,L2

+ ,W+
b ,

where the ultimate equality follows from the fact that W+ ⊂ ker(P−) =
P+L

2(∂M,E). Also

P
W⊥,L2

+ ,W+
b = b− P

W+,W
⊥,L2

+

b ∈ B +B = B ,
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and therefore, x = P−PW⊥,L2

+ ,W+
b. Since P

W⊥,L2

+ ,W+
b ∈ B ∩W⊥,L2

+ , the claim is
proved.

ii) Claim: X− is injective.

By linearity of X−, it suffices to show ker(X−) = 0. So fix u ∈ B ∩W⊥,L2

+ and
assume that X−u = 0. By definition

0 = X−u = P−u

and so u ∈ P+L
2(∂M,E). Therefore,

u ∈ P+L
2(∂M,E) ∩B ∩W⊥,L2

+ = W+ ∩W⊥,L2

+ = = 0 .

iii) Claim: X− is bounded with bounded inverse.

B ∩W⊥,L2

+ is closed in H
1
2 (∂M,E) and from Proposition 6.46 I), we know that

P−B is also closed H
1
2 (∂M,E). Moreover, since P+ is boundary decomposing,

P− : Hβ(∂M,E) → Hβ(∂M,E) bounded for all β ∈
[
−1

2
, 1
2

]
. Clearly, it follows

that X− is bounded. But we have shown that X− is a bijection, and by the
closedness of the above said spaces, it is a bounded linear bijection between
Banach spaces. Therefore, the open mapping theorem guarantees that X−1

− is
bounded.

Similarly, X∗
+ : B⊥,ĤP+

(D) ∩
(
W ∗

−
)⊥,L2

→ P∗
+B

⊥,ĤP+
(D) is also a bounded map with

bounded inverse, which is seen by mimicking this argument.

Define

g0 := PV+,W+⊕P−L2 ◦ (X−)
−1 : V

1
2
− → V

1
2
+ ,

h0 := PV ∗
−,W

∗
−⊕P∗

+L2 ◦
(
X∗

+

)−1
:
(
V ∗
+

) 1
2 →

(
V ∗
−
) 1

2 .

Proposition 6.47 gives us that V
1
2
− = P−B and

(
V ∗
+

) 1
2 = P∗

+B
⊥,ĤP+

(D) and Proposi-
tion 6.41 yields PV+,W+⊕P−L2 : H

1
2 (∂M,E) → H

1
2 (∂M,E). Therefore, the maps g0

and h0 are bounded in the induced subspace topology from H
1
2 (∂M,E).

b) Next, we show that B = graph(g0)⊕W+.

i) We leave it as an exercise to verify that graph(g0) ∩W+ = 0.

ii) The direction ‘⊃’.
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Clearly, W+ ⊂ B by construction. Let v ∈ V
1
2
− = P−B and by a) write

u := (X−)
−1v ∈ B ∩W⊥,L2

+ . Then,

v + g0v = v + PV+,W+⊕P−L2(X−)
−1v

= X−u+ PV+,W+⊕P−L2u

= P−u+ PV+,W+⊕P−L2u+ PW+,V+⊕P−L2u

= P−u+ PV+,W+⊕P−L2u+ PW+,V+⊕P−L2u− PW+,V+⊕P−L2u

= P−u+ P+u− PW+,V+⊕P−L2u

= u− PW+,V+⊕P−L2u

∈ B ∩W⊥,L2

+ ⊕W+ ⊂ B ,

where the fifth equality follow from P+L
2(∂M,E) = V+ ⊕W+.

iii) The direction ‘⊂’.

Let b ∈ B and write b = b+ + b+,⊥, where b+ := P
W+,W

⊥,L2

+

b and b+,⊥ :=

P
W⊥,L2

+ ,W+
b. Clearly, b+,⊥ ∈ B ∩W⊥,L2

+ and on letting v := X−b+,⊥ ∈ P−B,

b+,⊥ = (X−)
−1v

= P−(X−)
−1v + PV+,W+⊕P−L2(X−)

−1v + PW+,V+⊕P−L2(X−)
−1v

= v + g0v + PW+,V+⊕P−L2b+,⊥ .

However, PW+,V+⊕P−L2b+,⊥ ∈ W+ ⊂ B and so b+,⊥ ∈ graph(g0) ⊕W+. There-
fore,

b = b+ + b+,⊥ ∈ W+ + graph(g0)⊕W+ ⊂ graph(g0)⊕W+ .

Similarly, B⊥,ĤP+
(D) = graph(h0)⊕W ∗

− by mimicking this argument.

c) The adjoint map of g0 in H− 1
2 (∂M,E) satisfies g∗0 : (V ∗

+)
− 1

2 → (V ∗
−)

− 1
2 with

g∗0|H 1
2
= −h0. Similarly, the adjoint map of h0 in H− 1

2 (∂M,E) satisfies h0 : (V ∗
−)

− 1
2 →

(V ∗
+)

− 1
2 with h∗0|H 1

2
= −g0.

Recall from Corollary 6.42 that
〈
V

1
2
± ,
(
V ∗
±
)− 1

2

〉
extends 〈L2(∂M,E),L2(∂M,E)〉.

Consequently, we obtain that

g∗0 :=
(
V ∗
+

)− 1
2 →

(
V ∗
−
)− 1

2

be the adjoint map with respect to this pairing.

By definition, 〈
V−, V

∗
+

〉
=
〈
V ∗
−, V+

〉
=
〈
B,B⊥,ĤP+

(D)
〉
= 0 . (6.4)

Now, fix u ∈
(
V ∗
+

) 1
2 and v ∈ V

1
2
− . Then, using (6.4), we obtain

0 = 〈v + g0v, u+ h0u〉 = 〈g0v, u〉+ 〈v, h0u〉 .
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That is,
〈v, g∗0u〉 = 〈v,−h0u〉

for all v ∈ V
1
2
− . By previous Proposition 6.41, we know that V

1
2
− is dense in V− and

V
− 1

2
− . Therefore, we conclude that g∗0u = −h0u for all u ∈ (V ∗

+)
1
2 .

By considering the adjoint map to h0, it is clear that the stated conclusion for h∗0
follows.

d) The map g0 extends to g : V− → V+ bounded.

We prove this this by resorting to complex interpolation (c.f. Section 3.9). Note
that we know that

L2(∂M,E) =
[
H

1
2 (∂M,E),H− 1

2 (∂M,E)
]
ϑ= 1

2

.

Moreover, we know

P
V

1
2

± ,W±⊕P∓H
1
2
: H

1
2 (∂M,E) → H

1
2 (∂M,E) ,

P
V

− 1
2

± ,W±⊕P∓H− 1
2
: H− 1

2 (∂M,E) → H− 1
2 (∂M,E) .

We use the Retraction-Coretraction theorem, Theorem 3.57. For that, define

B1 := H
1
2 (∂M,E) B2 := H− 1

2 (∂M,E)

B̃1 := V
1
2
± B̃2 := V

− 1
2

± .

Define R := P
V

− 1
2

± ,W+⊕P∓H− 1
2

and S := id. Indeed, since R is now a projection on

B̃i, the choice of S indeed makes R a retraction with coretraction S.

With this choice of spaces, Theorem 3.57 then asserts

Sϑ

[
V

1
2
± , V

− 1
2

±

]
=

(
P
V

− 1
2

± ,W+⊕P∓H− 1
2

)
ϑ

[
H

1
2 (∂M,E),H− 1

2 (∂M,E)
]
ϑ

.

However Sϑ = id, and hence Sϑ
[
V

1
2
± , V

− 1
2

±

]
=
[
V

1
2
± , V

− 1
2

±

]
ϑ
. Therefore, by choosing

ϑ = 1
2
, we deduce

V± =
[
V

1
2
± , V

− 1
2

±

]
ϑ= 1

2

.

By c), we conclude

h∗0 : V
− 1

2
− → V

− 1
2

+ and h∗0|H 1
2
: V

1
2
− → V

1
2
+ .

By interpolation, obtain h := (h∗0)ϑ= 1
2
: V− → V+ boundedly. By construction, this

extends −g0 and therefore, g := −h is the desired map.
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Remark 6.48. In b) iii), PW+,V+⊕P−L2b+,⊥ is not necessarily 0 even though
b+,⊥ ∈ W⊥,L2

+ . This is due to the fact that PW+,V+⊕P−L2b+,⊥ does not project
along W⊥,L2

+ . By Lemma 6.44, we certainly have W⊥,L2

+
∼= V+⊕P−L

2(∂M,E), but
in the calculations here, what is required is equality.

This is one reason why the proof of this theorem is cumbersome. We are required
to organise splittings of the relevant spaces in a very precise way so that we can
obtain equalities than just isomorphisms.

6.3 Properties of elliptically regular boundary
conditions

In this short section, we examine some salient features of elliptically regular bound-
ary conditions. To that end, we start with the following definition.

Definition 6.49 (Semiregular ad regular boundary conditions). For s ≥
1
2
, we say an elliptically regular boundary condition B is

(
s+ 1

2

)
-semiregular

if there is a boundary decomposing projector P+ s.t. W+ ⊂ Hs(∂M,E) and
g
(
V s
−
)
⊂ V s

+, where W+ and g are the objects appearing in Definition 6.6 for
the L2-graphical decomposition of B:w w.r.t. P+. We say B is

(
s+ 1

2

)
-regular, if

both B and B† are (s+ 1
2
)-semiregular.

A map P is called a classical pseudo-differential projector of order 0 if locally, it can
be written as an integral against a symbol, which is simply an endomorphism, and
where the symbol enjoys a certain asymptotic expansion. The ‘classical’ part of this
is precisely the asymptotic expansion. Pseudo-differential operators of order 0 act
boundedly on all Sobolev spaces on a closed manifold. The quintessential example
of a classical pseudo-differential operator of order 0 in our context are the spectral
projections χ+(A) associated an invertible bisectorial adapted boundary operator
A.

These are traditionally well studied objects, and we shall refrain from exploring their
technical underpinnings to greater lengths, as this is beyond the scope of this text.
We mention these as they have historically been central to the study of boundary
value problems. These projectors induce an important class of boundary conditions
as identified in the following definition.

Definition 6.50. Let P be a classical pseudo-differential projector of order 0.
Then

BP := PH
1
2 (∂M,E)

∥·∥Ȟ(D)



6.3 Properties of elliptically regular boundary conditions 215

is called a pseudo-local boundary condition. If E ⊂ E|∂M is a smooth subbundle,
then

BE := H
1
2 (∂M,E)

∥·∥Ȟ(D)

is called a local boundary condition.

Remark 6.51. If E is a smooth subbundle, then it has an associated projection on
each fibre, which varies smoothly. This then defines a classical pseudo-differential
projector of order zero. Therefore, every local boundary condition is pseudo-local.

Theorem 6.52. Let BP be a pseudo-local boundary condition. Then the following
are equivalent.

(I) BP is elliptically regular and BP = PH
1
2 (∂M,E) (i.e. PH

1
2 (∂M,E) is au-

tomatically closed in Ȟ(D)).

(II) For some (equivalently all) invertible adapted boundary operators A,

P − χ+(A) : L2(∂M,E) → L2(∂M,E)

is elliptic (equivalently Fredholm).

(III) For all x ∈ ∂M and ξ ∈ T ∗
x∂M \ {0} the principal symbol

σP(x, ξ) : Ex → Ex

restricts to an isomorphism⊕
Re(λ)<0

EigıσA(x,ξ)(λ)
∼= σP(x, ξ)Ex

and σP∗(x, ξ) restricts to an isomorphism⊕
Re(λ)<0

EigıσA∗ (x,ξ)(λ)
∼= σP∗(x, ξ)Ex .

Corollary 6.53. Every pseudo-local elliptically regular BP is ∞-regular. In par-
ticular, if DBPv ∈ C∞(M,F ), then v ∈ C∞(M,E) (i.e. smooth up to the boundary
∂M).

Clearly, the APS boundary conditions associated with an adapted boundary op-
erator are pseudo-local. We have seen in Chapter 5, these are the most signifi-
cant boundary conditions from a point of view of global analysis and index theory.
However, there are also interesting local boundary conditions which are elliptically
regular for first-order operators, even if they do not lead to index formulae.
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Example 6.54 (Absolute and relative boundary conditions). Let (M, g) be
a Riemannian manifold, and T = ~n the inward pointing normal. Let τ = ~N = ~n♭,
the associated conormal. Define

E := F := ΛCT
∗M = ΛT ∗M ⊗ C .

The natural operator on this bundle is the Hodge-Dirac-operator

DH = d+ d∗ .

On the boundary, we have the following splitting

ΛpT ∗
xM |∂M = ΛpT ∗

x∂M ⊕ τ(x) ∧ Λp−1T ∗
x∂M .

Therefore, we have that u ∈ ΛpT ∗
xM |∂M can be written as

u = uT + τ(x) ∧ u⊥ .

Define E ′ := ΛC∂M = Λ∂M ⊗ C. Then, absolute boundary conditions for DH is
given by

Babs := H
1
2 (∂M,E ′) =

{
u ∈ H

1
2 (∂M,E)

∣∣∣ u⊥ = 0
}

.

Now, define E ′′ := τ ∧ ΛC∂M . Then, the relative boundary conditions for DH is
given by

Brel := H
1
2 (∂M,E ′′) =

{
u ∈ H

1
2 (∂M,E)

∣∣∣ uT = 0
}

.

Both these boundary conditions are locally elliptically regular.

Example 6.55 (Chiral boundary conditions). Assume now that (M, g) is Rie-
mannian Spin manifold. Then, the bundles in question are E := F := /∆M and /D
is the Spin-Dirac.

We say that a map G : /∆M |∂M → /∆M |∂M is a boundary chirality operator if

G2 = id, h(Gu,Gv) = h(u, v),

/∇G = 0, σ /D(x, ξ) ◦G = −G ◦ σ /D(x, ξ), and
σ /D(x, τ) ◦G = G ◦ σ /D(x, τ)

for all ξ ∈ T ∗
x∂M . Fibrewise, G is an involution and therefore its spectrum consists

of {±1}. Hence, we obtain bundles

E± := EigG(±1), /∆M = E+ ⊕ E−.

The local boundary conditions

B± := H
1
2 (∂M,E±)

are the chiral boundary conditions. They are local elliptically regular boundary
conditions.

Let us now look at some particular examples of boundary chirality operators.
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1. If dim(M) is even then G := µC complexified volume element is a boundary
chirality operator. In this situation, the usual splittings to the subspaces
/∆
±
∂M are precisely EigµC(±1).

2. If dim(M) is odd and G := ıτ , then the space B+ is called the MIT Bag
Condition. This was originally conceived to model electrons contained in a bag.
It illustrates that, despite the lack of an index formula, local elliptically regular
boundary conditions for first-order operators may still be of physical relevance.
It is this boundary condition which appears in the following illustration, also
appearing on the cover of this text.
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