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1 Preliminaries and Submanifolds

1.1 Einstein’s Summation Notation

The theory of Differential Geometry rapidly becomes a beast involving summations and a large number of in-
dices. For this reason, we assume the Einstein’s summation convention.

Definition 1.1 (Einstein’s Summation Convention) Whenever we have a raised index multiplied with a low-
ered index, we are always taking a summation over the appropriate range. That is, we define:

viui =

n∑
i=1

viui

Throughout this document, we also assume that a raised index appearing in the denominator is treated as a
lowered index. That is, exactly:

vi ∂

∂xi =

n∑
i=1

vi ∂

∂xi

The significance of this will become apparent later when we introduce appropriate notation for basis tangent
vectors.

1.2 Submanifolds

Our discussion of Differential Geometry begins with the inverse function theorem. Our setting is Rn. Recall that:

Theorem 1.2 (Inverse Function Theorem) Let U open in Rn, and let F : U → Rn, where F = F(x1, . . . , xn) =

( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)). Further, suppose that F ∈ Cp(Rn) for p > 0 and that the Jacobian DF at q ∈ U
is invertible. Then, there exists a neighbourhood V of q with:

1. F(V) = Img F|V open in Rn

2. F|V : V → F(V) a Cp diffeomorphism

We define the notion of a submanifold in Rn+k:

Definition 1.3 (n-dimensional submanifold) We say that M is an n-dimensional Cp-submanifold of Rn+k if for
all q ∈ M, there exists a U open in Rn and a Cp mapping φ : U → Rn+k satisfying:

1. Img φ = Ω ∩ M for some Ω open in Rn+k, with q ∈ Img φ.

2. φ is injective

3. The matrix:

Dφ =


∂φ1
∂x1

. . . ∂φ1
∂xn

...
. . .

...
∂φn+k
∂x1

. . . ∂φn+k
∂xn


has rank n.
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We call such a φ a local parametrisation.

Remark The last condition is equivalent to the condition that any n × n submatrix D′φ of Dφ has det D′φ , 0.

Figure 1: Manifold of dimension 2 in 3 space (n = 2, k = 1).

The following result highlights an important property of submanifolds.

Lemma 1.4 An n-dimensional submanifold M ⊆ Rn+k locally looks like an n-dimensional graph over some n-
dimensional coordinate plane.

Proof Fix x ∈ M and fix a local-parametrisation φ : U → Rn+k around x. By the last condition of our definition,
without loss of generality, there exists an n × n submatrix Dφ′(x) of Dφ(x) such that det Dφ′(x) , 0. In fact, we
can take:

Dφ′(x) =


∂φ1
∂x1

. . . ∂φ1
∂xn

...
. . .

...
∂φn
∂x1

. . . ∂φn
∂xn


Consider the map F : U → Rn defined by:

F(x) = (φ1(x), . . . , φn(x))

In light of the Inverse function theorem, F is a Cp-diffeomorphism on some neighbourhood V of x. �

Corollary 1.5 Suppose φ : U → Rn+k and ψ : V → Rn+k are local parametrisation of a Cp submanifold M around
x. Write φ(U) ∩ ψ(V) = W , ∅. Then, φ−1 ◦ ψ : ψ−1(W)→ φ−1(W) is:

1. Injective

2. Cp-differentiable.

Proof The first claim is trivial.

To prove the second, fix x ∈ ψ−1(W). We have F : U → Ω, where Ω = Proj (W). By the Lemma, we can assume
F is a Cp-diffeomorphism. So, we can write:

φ−1 ◦ ψ = F−1 ◦ (π ◦ ψ)

2



Figure 2: A submanifold locally looks like a graph over some function.

Figure 3: Two local parametrisations with a nonempty image.

where π(x1, . . . , xn+k) = (x1, . . . , xn).

Also, we have that F−1 ∈ Cp. But D(π◦ψ)(x) is invertible since Dψ has rank n. So, π◦ψ ∈ Cp, This means exactly
that F−1 ◦ (π ◦ ψ) is Cp. �

3



Figure 4: Two parametrisations about a point.
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2 Differentiable Structures and Abstract Manifolds

Figure 5: An n-submanifold.

There are different ways of defining abstract manifolds. The one approach is the topological approach, where
we define a manifold to be a topological space that is locally diffeomorphic to Euclidean space.

We will take an alternative approach where we start considering an abstract set and induce a topology on it. It’s
worth noting that the two approaches are equivalent.

Definition 2.1 (Differentiable Structure) A Cr (r > 0) differentiable structure of dimension n on a set M is a
collection of injective maps:

D = {φα : Uα → M}

which each Uα open in Rn such that the following conditions hold:

1. M =
⋃
α Img φα

2. For any pair α, β with W = Img φα ∩ Img φβ , ∅,

• φ−1
α (W) and φ−1

β (W) are open in Rn

• φ−1
α ◦ φβ : φ−1

β (W)→ φ−1
α (W) is a Cr diffeomorphism.

Remark It’s important to note that M is simply a set. It has no topological structure (yet!). This is the reason
we cannot talk about differentiability or continuity of the maps φα. So, we do the next best thing - talk about the
differentiability of φ−1

α ◦ φβ since this is a map between subsets of n dimensional Euclidean spaces.

To guarentee the uniqueness of the objects which we shall later define, we need to talk about maximal differen-
tiable structures.

Definition 2.2 (Compatible) Let D be a Cr differentiable structure on a set M. Let φ : U → M with U open in
Rn satisfying:

1. φ is an injection

5



2. If W = Img ψ ∩ Img φ , ∅ for ψ ∈ D , then:

• φ−1(W) and ψ−1(W) are open in Rn

• φ−1 ◦ ψ : ψ−1(W)→ φ−1(W) is a Cr diffeomorphism.

Then we say that φ is compatible with D .

Definition 2.3 (Maximal Differentiable Structure) A Cr differentiable structure D on M is said to be maximal
if D for every map φ compatible with D we have that φ ∈ D .

Remark It is not enough to simply ask about the containment of extensions for any given compatible ψ. Both
the map and the domain are important.

We can now define our abstract manifolds:

Definition 2.4 (Cr differentaible n-Manifold) The set M together with a Cr differential structure D on M is
called an n-dimensional Cr differentiable manifold.

Lemma 2.5 Let D be a Cr differentiable structure on M. Define:

F = {φ : U → M : φ compatible with D}

Then, F is the unique maximal differential structure containing D .

The proof of this is left as an exercise.

Previously, it was mentioned that we discuss maximal differentiable structures to address a uniqueness issue at
hand. Suppose that we have (M,D), and (M,D ′), where every map in D is compatible with D ′. Intuitively, these
two manifolds should be the same geometric object. We can characterise this with the use of this lemma, we
can take this unique maximal extension. Then, the extension of D and D ′ will be the same structure F .

This result is important for another reason. The uniqueness of the maximal extension tells us that we can often
omit “maximal.”

It is also note noting that we relax the notation and simply call the set M the manifold. In most cases, this suffices
because we are only concerned with a single differentiable structure on M.

One immediate consequence of this result allows us to formulate the following important definitions.

Definition 2.6 (Local Parametrisation) Let D be a maximal differentiable structure on a manifold M. Then
φ ∈ D is called a local parametrisation around pImg φ.

Definition 2.7 (Local Coordinate Chart) A map φ−1 : U → Rn with φ ∈ D with D a maximal differentiable
structure on M is called a local coordinate chart of any point in U.

We give some important examples of abstract manifolds.

Example Submanifolds of Rn.

Example Let RPn = {straight lines in Rn through 0}. Claim: RPn can be made into a diff. manifold (Cr diff., whats
r?).
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Figure 6: A line not contained in the plane xi = 0.

Consider Vi = {l ∈ RPn : l is not contained in the coord plane xi = 0}. See Figure 2.

Trivially
⋃

i Vi = RPn.

Define φ′i : Vi → R
n−1 given by picking some point x = (x1, . . . , xn) ∈ l and φ′i(l) = ( x1

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
). Note

that we “remove” xi because if we divide through by xi, we have made the coordinate i equal to 1.

Figure 7: Line under parametrisation φ.

To suit our definition, we consider the function φ : Rn−1 → Vi that takes a point (x1, . . . , xn−1) ∈ Rn−1 to the line
passing through the point ( x1

xi
, . . . , xi−1

xi
, 1, xi+1

xi
, . . . , xn−1

xi
). See Figure 2

Trivially, φ is a bijection, and RPn =
⋃

i Vi =
⋃

i Img φi.
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3 Vectors, Tangents, Bundles

3.1 The Tangent Space and Tangent Vectors

Tangent vectors are natural in the submanifold setting since we can think of a tangent vector to n surface as
simply an n + k vector. However, in the abstract setting, we do not have the privilege of an ambient space, so we
need to talk in terms of curves.

From here on, unless otherwise stated, we will assume that M is an n-manifold.

Figure 8: Tangent vector to p in the submanifold setting

Definition 3.1 (Differentiable Curve) A differentiable curve in M is simply a map γ : I → M where I ⊆ R is an
interval such that for every t ∈ Int I and for some φ a coordinate chart around γ(t), the map φ ◦ γ is differentiable.

Figure 9: Differentiability of a curve γ

Remark As with all definitions in Differential Geometry, it is important to check that the definition is independent
a particular of coordinate chart. That is, if ψ is another coordinate chart around γ(t) for some t ∈ Int I, then ψ ◦ γ
is differentiable at t. This is left as an exercise to the reader.
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Now, fix a point p ∈ M. Now, define:

Mp = {γ : (−ε, ε)→ M : γ(0) = p, γ differentiable at 0}

Remark The ε may depend on the particular γ - it is not important. The important thing is that γ is differentiable
at 0 (that is, at point p on the manifold).

Let γ, σ ∈Mp. Take a coordinate chart φ around p. We write γ ∼ σ if:

d
dt
|t=0 φ ◦ γ =

d
dt
|t=0 φ ◦ σ

Lemma 3.2 ∼ is an equivalence relation

Proof Trivial. �

Since we have an equivalence relation, we can talk about quotienting by it. Firstly, let:

[σ] =
{
γ ∈Mp : σ ∼ γ

}
Then write:

Mp/∼ =
{
[σ] : σ ∈Mp

}
For any coordinate chart ψα around p, we define an important map Aα : M /∼ → Rn given by:

Aα[σ] =
d
dt
|t=0 (φα ◦ σ)

This map is key in understanding tangent spaces of abstract manifolds. The next few results will illustrate some
properties of this map.

Lemma 3.3 The map Aα is well defined.

The proof of this is left as an exercise. The following results warrants greater attention.

Lemma 3.4 The map Aα is a bijection.

Proof To prove surjectivity, fix w ∈ Rn. Consider the straight line given by S p(t) = tw + ψα(p). Then, it follows
that S ′p(0) = w and S p(0) = ψα(p).

Then, (φ−1
α ◦ S p)(t) is a curve on M, and by construction, we trivially have that (φ−1

α ◦ S p) ∈Mp.

Now for injectivity:

Aα[σ] = Aα[γ]

⇐⇒
d
dt
|t=0 (ψα ◦ σ) =

d
dt
|t=0 (ψα ◦ γ)

⇐⇒ σ ∼ γ

⇐⇒ [σ] = [γ]

�
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The fact that Rn is a vector space means that by the previous result, Aα induces a linear structure on M /∼.

We define:

[σ] + [γ] = A−1
α (Aα[σ] + Aα[γ])

k[σ] = A−1
α (kAα[σ]), k ∈ R

This makes M /∼ an n-dimensional vector space over R. But we need the following result to confirm that our
construction is indeed meaningful geometrically.

Lemma 3.5 The linear structure defined on Mp/∼ is independent of the choice of coordinate chart.

Proof We check that A−1
β (Aβ[σ] + Aβ[γ]) = A−1

α (Aα[σ] + Aα[γ]). We leave it up to the reader to check that
A−1
β (kAβ[σ]) = A−1

α (kAα[σ]).

Figure 10: Coordinate transition at p

We note that locally, ψβ = (ψβ ◦ ψ−1
α ) ◦ (ψα ◦ σ). It follows then that:

d
dt
|t=0 (ψβ ◦ σ) = D(ψβ ◦ ψ−1

α )(p)
d
dt
|t=0 (ψα ◦ σ)

=⇒ Aβ[σ] + Aβ[γ] = D(ψβ ◦ ψ−1
α )(p)(Aα[σ] + Aα[γ])

So, we only need to show that for any w ∈ Rn, Aβ ◦ A−1
α (w) = D(ψβ ◦ ψ−1

α )(ψα(p))w.

So, let σ̂ : (−ε, ε)→ Rn be a curve that generates w. It follows that A−1
α (w) = [ψ−1

α ◦ σ̂] and:

Aβ[A−1
α ◦ σ̂] =

d
dt
|t=0 (φβ ◦ φα ◦ σ̂)

= D(ψβ ◦ ψ−1
α )(ψα(p))

d
dt
|t=0 σ̂

= D(ψβ ◦ ψ−1
α )(ψα(p))w

�
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For clarity, we list our construction hitherto:

1. Mp = {curves passing through p, differentiable at p}

2. Mp/∼ =
{
[σ] : σ ∈Mp

}
.

3. ψα coordinate chart around p, then Aα a bijection with Rn.

4. We’ve used ψα to pull back the linear structure of Rn to Mp/∼.

5. We’ve shown that (Mp/∼,+) is an n dimensional vector space over R independent of the choice of coordi-
nate chart.

This suggests:

Definition 3.6 (Tangent Space, Tangent Vector) We define the tangent space to M at p denoted by TpM:

TpM = Mp/∼

Each tangent vector at p is then given by [σ] ∈ TpM. We also use the notation [σ] = d
dt |t=0 σ = σ′(0) to denote

a tangent vector.

Remark The notation we introduce in the definition is motivated by the fact that in Rn, since we consider the
tangent space at each point Rn to be a copy of Rn itself, we can write for [σ] ∈ TpR

n as:

[σ] =
d
dt
|t=0 σ

Remark Given a curve, we shall write [σ(t + s)] to denote the tangent vector at σ(s). Also, we shall simply write
σ′(t) for the tangent vector at σ(t).

We now consider finding a basis for TpM. By the properties of Aα, we should be able to “pull-back” the standard
basis for Rn into TpM.

We define the coordinate curve in direction i as Xi(t) = tei + ψα(p). From the properties of Aα, it follows that
A−1
α (ei) = [ψ−1

α ◦ Xi] and:

span
{
[ψ−1

α ◦ Xi] : 1 ≤ i ≤ n
}

= TpM

We define an important notation that we will use frequently:

Definition 3.7 (Basis Vectors of TpM) Given a coordinate chart ψα with coordinates {xi}, we write:

∂

∂xi = [ψ−1
α ◦ Xi]

Remark It is not a coincidence that our choice of notation here coincides with that of the familiar ∂
∂x of calculus.

We will later establish the connection between the two.

Remark It is worth stressing at this point that when we write ∂xi

∂y j , are really writing:

ψα ◦ ψ
−1
β (y) = (x1(y), . . . , xn(y))

where y = (y1, . . . , yn). This is the usual calculus operator in Rn, and it is different from ∂
∂xi ∈ TpM.
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Now, suppose we have another coordinate choice around p, say
{
yi
}

given by φβ. Now, we have two basis:

∂

∂xi = [ψ−1
α ◦ Xi]

∂

∂yi = [ψ−1
β ◦ Y i]

where Y i(t) = tei + ψβ(p).

Figure 11: Coordinate Curves in two different charts

If we push the y j into the second copy of Rn via φα, there’s no reason to believe that it is a coordinate curve. In
fact, in general, it isn’t. Instead, we have the following important result:

Theorem 3.8

∂

∂y j =
∂xi

∂y j

∂

∂xi

Proof We note that:

d
dt
|t=0 (ψα ◦ ψβ ◦ Y j) = D(ψα ◦ ψ−1

β )(ψβ(p))
d
dt
|t=0 (tei + ψβ(p)) = D(ψα ◦ ψ−1

β )(ψβ(p))e j

We write: ψα ◦ ψ−1
β (y) = (x1(y), . . . , xn(y)) and it follows that:

D(ψα ◦ ψ−1
β ) =


∂x1

∂y1 . . . ∂x1

∂yn

...
. . .

...
∂xn

∂y1 . . . ∂xn

∂yn


and so:

D(ψα ◦ ψ−1
β )(ψβ(p))e j = (

∂x1

∂y j (ψβ(p)), . . . ,
∂xn

∂y j (ψβ(p))) =
∂xi

∂y j (ψβ(p))ei

12



We write ∂xi

∂y j (ψβ(p)) = ∂xi

∂y j since in the context, we’re working in local coordinates around the point p. Also,

observe that A−1
α (ei) = [φα ◦ Xi] = ∂

∂xi , so by this and the linearity of Aα, it follows that:

∂

∂y j = A−1
α (Aα(

∂

∂y j )) = A−1
α

(
d
dt
|t=0 (ψα ◦ ψ−1

β ◦ Y j)
)

= A−1
α

(
∂xi

∂y j ei

)
=
∂xi

∂y j A−1
α (ei) =

∂xi

∂y j

∂

∂xi

�

You will observe that tangent vectors change coordinates very close to the chain rule. In fact, we have used the
chain rule in Rn in the proof when we introduced the Jacobian. This is a glimpse of the connection that tangent
vectors have with calculus.

3.2 The Tangent Bundle

We have so far defined the tangent space for every point on M. It is sometimes important to consider the
collection of the tangent spaces.

Definition 3.9 (Tangent Bundle) The Tangent Bundle is denoted by TM and defined as:

TM =
{
(p, v) : v ∈ TpM, p ∈ M

}
Remark Sometimes, we relax our notation and consider TM =

⋃
p∈M TpM. However, we are implicitly still

distinguishing our tangent spaces at different points. In particular, we allow writing v ∈ TM and v ∈ TpM instead
of (v, p) ∈ TM. This simplification is used in the proof to follow.

Theorem 3.10 If M is Cr n-manifold, then T M has a natural differentiable structure which makes it a Cr−1 2n-
manifold.

Proof Firstly, we observe that there is a natural projection map π : TM → M such that π(v) = p for all v ∈ TpM.

Let D = {φα : Uα → M} be the Cr differential structure on M.

Figure 12: Canonical projection π : TM → M.
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For any α, define: π−1(Img φα) =
{
v ∈ TM : φ(v) ∈ Img φα

}
Recall that φα : Uα → M gives us a basis

{
∂

∂xα,1 , . . . ,
∂

∂xα,n

}
for all Tφα(xα)M.

Now we define Φα : Uα × R
n → φ−1(Img φα) ⊆ TM by:

Φα(xα, tα) = tαi
∂

∂xα,i
|φα(xα)

Clearly, Φα is injective, and since Uα open in Rn, Uα × R
n open in R2n. Also, we have that Img Φα = π−1(Img φα)

and TM =
⋃
α Img Φα.

Define:

D ′ = {Φα : Uα × R
n → TM}

We want to show that this gives a differential structure on TM.

So, suppose that Img Φα ∩ Img Φβ = W , ∅. This is if and only if Img φα ∩ Img φβ , ∅ and it follows that
Img Φα ∩ Img Φβ = π−1(Img φα ∩ Img φβ) , ∅

Firstly, observe that Φ−1
α (W) and Φ−1

β (W) open in R2n since φ−1
α (Img Φα ∩ Img Φβ) and φ−1

β (Img Φα ∩ Img Φβ) are
open in Rn.

Figure 13: Intersection of Img Φα and Img Φβ projected on M.

Now, we consider the map Φ−1
β ◦ Φα : Φ−1

α (W)→ Φ−1
β (W). Fix (xα, tα) ∈ Φ−1

α (W). Then,

Φ−1
β ◦ Φα(xα, tα) = Φ−1

β

(
tαi

∂

∂xα,i
|φα(xα)

)
= (xβ, tβ)

So, φα(xα) = φβ(xβ), and we have:

tβi
∂

∂xβ,i
|φβ(xβ) = tαi

∂

∂xα,i
|φα(xα)

14



and we have
{

∂
∂xα,i

}
and

{
∂

∂xβ, j

}
a basis for TpM. By our change of coordinates formula:

tβj
∂

∂xβ, j
|φβ(xβ) = tαi

∂

∂xα,i
|φα(xα) = tαi

∂xα, j

∂xβ,i
|φβ(xβ)

It follows then that:

tβj = tαi
∂xα, j

∂xβ,i

and since ∂xα, j
∂xβ,i ∈ Cr−1, we have that D ′ is a Cr−1 differentiable structure. The fact that D ′ is a 2n-dimensional

structure is trivial. �

Corollary 3.11 M Cr n-manifold 7→ (TM) Cr−1 2n-manifold 7→ T(TM) Cr−2 4n-manifold
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4 The Lie Derivative

4.1 Manifold Topology and Calculus

We would like to talk about concepts of continuity and differentiability of functions f : M → N, where M,N are
manifolds. In order to talk about these concepts, we need to topologise a manifold in some appropriate way.

Definition 4.1 (Open Set) A subset V ⊆ M is called open in M (or simply open) if for any coordinate chart
ψ : U → Rn with U ∩ V , ∅, ψ(V ∩ U) open in Rn.

We leave it as an exercise to verify that this is indeed a topology on M.

Definition 4.2 (Differentiable) Let V be open in M. Let f : V → R be a function. Then, for any p ∈ V, we say
that f is differentiable at p if for some coordinate chart ψα : V → Rn around p, the unique map induced by ψα
denoted fα = f ◦ ψ−1

α : ψ(V ∩ U)→ R is differentiable at q = ψα(p).

Figure 14: Characterisation of differentiability.

It is a worthwhile exercise to check that this definition holds over all coordinate charts.

We can say that f ∈ Ck(V) if f is Ck at each point p ∈ V.

Remark If M is Cr, then we can only talk about f : M → R being Ck, for k ≤ r since we use ψ to talk about
differentiability and ψ ∈ Cr.

We now discuss the way in which tangent vectors act on functions on manifolds.

Definition 4.3 (Directional Derivative) Let v = [γ] ∈ TpM, and suppose that f : V → R is differentiable at p.
Then the directional derivative is denoted v( f ) and given by:

v( f ) =
d
dt
|t=0 ( f ◦ γ)

16



Lemma 4.4 The directional derivative is well defined.

Proof We compute:

d
dt
|t=0 ( f ◦ γ) =

d
dt
|t=0 ( f ◦ ψ−1

α ) ◦ (ψα ◦ γ)

=
d
dt
|t=0 ( fα ◦ β)

(where β = ψα ◦ γ)

=
d
dt
|t=0 fα(β1(t), . . . , βn(t))

=
∂ f
∂xi |q

dβi

dt
|t=0

= β̇i(0)
∂ f
∂xi

Now, for any other σ ∈ [γ], (ψα ◦ σ)′(0) = β̇(0), and so the result follows. �

We are now prepared to reveal how we can do calculus with the basis induced by coordinate charts.

Lemma 4.5

∂

∂xi ( f ) =
∂ fα
∂xi

Proof Let ψα be the coordinate chart with coordinates
{
xi
}

Recall that TpM has basis given by
{
∂
∂xi = [ψ−1

α ◦ Xi]
}
.

Now take any f : U → R differentiable at p, and we compute:

∂

∂xi ( f ) =
d
dt
|t=0 ( f ◦ ψ−1

α ) ◦ (ψα ◦ ψ−1
α ◦ Xi) =

d
dt
|t=0 ( fα ◦ Xi) =

d
dt
|t=0 fα(q + tei) =

∂ fα
∂xi

�

Since this holds for all differentiable f , the basis given by a coordinate system really does act as differential
operators.

Lemma 4.6 If v ∈ TpM, and v = vi ∂
∂xi for local coordinates

{
xi
}
, then:

v( f ) = (vi ∂

∂xi )( f ) = vi ∂

∂xi ( f )

Proof We can write v = [γ]. Then,

v( f ) =
d
dt
|t=0 f ◦ γ

=
d
dt
|t=0 ( f ◦ ψ−1

α ) ◦ (ψα ◦ γ)

=
∂ fα
∂xi β̇

i(0)

where β̇i(0) = ˙(ψα ◦ γ)i(0). By setting f as mapping of the component i of ψα, we get v( f ) = vi. This justifies
writing β̇i(0) = vi, and by combining Lemma 4.5:

v( f ) = vi ∂ fα
∂xi = vi ∂

∂xi ( f )

�
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Corollary 4.7 , For v,w ∈ TpM, if v( f ) = w( f ) for all differentiable f at p, then v = w.

Proof Taking fα = πi, the projection of the coordinate i, we get wi = vi for all i. It follows that v = w. �

4.2 Vector Fields

Let V be open in M. We will assume this throughout this section unless otherwise stated.

Definition 4.8 (Vector Field) A vector field X on V is just a correspondence that associates to each p ∈ V, an
element of TpM. We denote the set of vectorfields in V by X (V).

Remark Given a coordinate chart ψα : Uα → R
n, we can consider ∂

∂xi (p) = ∂
∂xi |p as a vector field inside Uα.

Figure 15: A vectorfield which associates p to v ∈ TpM.

We want to firstly address the notion of smoothness of a vector field. Suppose that X is a vector field in V. Then
for any p ∈ V, and any coordinate chart ψα, we can write X(x) = Xα,i(x) ∂

∂xi (we write with the raised index α to
denote the dependence on ψα). This inspires the following definition:

Definition 4.9 (Smoothness of Vector Field) We say that X is differentiable at p if each Xα,i : V → R is differ-
entiable at p. We say that X ∈ Ck(V) if X ∈ Ck at each point p ∈ V.

Remark Again, it is worthwhile exercise to show that our definition holds under all choices of coordinates around
p. On a Cr manifold, the highest order of derivatives for a vector field is Cr−1 since the change of basis formula
involves first order derivatives.

Theorem 4.10 Let V open in M, and X,Y vector fields on V. Then there exists a unique vector field Z on V such
that:

Z f = X(Y f ) − Y(X f )

for all f ∈ C2(V).

18



Proof Let f ∈ C2(V). We fix a coordinate choice ψα : Uα → R
n. Then, it follows that:

X f = Xα,i ∂ fα
∂xi ,Y f = Yα,i ∂ fα

∂xi

Also, note that X f : V → Rn, where for p ∈ V:

X f (p) = Yα,i(p)
∂ fα
∂xi (ψα(p))

It follows that:

Y(X f ) = Yα, j ∂

∂x j (X f ) = Yα, j ∂

∂x j (X f ) = Yα, j
∂
(
Xα,i
α

∂ fα
∂xi

)
∂x j = Yα, j

(
∂Xα,i

α

∂x j

∂ fα
∂xi + Xα,i

α

∂2 fα
∂x j∂xi

)
Similarly,

X(Y f ) = Xα, j
(
∂Yα,i

α

∂x j

∂ fα
∂xi + Yα,i

α

∂2 fα
∂x j∂xi

)
Note that we are not applying the summation convention to the α, only to i, j. This will be assumed throughout
the rest of the proof.

Also, since f ∈ C2(V), we have:

∂2 fα
∂xi∂x j =

∂2 fα
∂x j∂xi

and it follows that:

X(Y f ) − Y(X f ) = Xα, j ∂Yα,i
α

∂x j

∂ fα
∂xi + Xα, jYα,i

α

∂2 fα
∂x j∂xi − Yα, j ∂Xα,i

α

∂x j

∂ fα
∂xi − Yα, jXα,i

α

∂2 fα
∂x j∂xi

= Xα, j ∂Yα,i
α

∂x j

∂ fα
∂xi − Yα, j ∂Xα,i

α

∂x j

∂ fα
∂xi

=

(
Xα, j ∂Yα,i

α

∂x j − Yα, j ∂Xα,i
α

∂x j

)
∂ fα
∂xi

since at p:

Xα, j(p)Yα,i
α (ψα(p))

∂2 fα
∂x j∂xi (ψα(p)) = Yα, j(p)

∂Xα,i
α

∂x j (ψα(p))
∂ fα
∂xi (ψα(p))

We set:

Z =

(
Xα, j ∂Yα,i

α

∂x j − Yα, j ∂Xα,i
α

∂x j

)
∂

∂xi

Now, this expression is valid on all of V ∩Uα. We need to show that this is valid on all of V. Let ψβ : Uβ → R
n be

another coordinate choice around p, and suppose that Z′ f = X(Y f ) − Y(X f ) on V ∩ Uβ. Now on Uα ∩ V ∩ Uβ,
we have Z f = Z′ f for all f ∈ C2. By Corollary 4.7, this implies that Z = Z′. �

4.3 The Lie Derivative

The theorem above gives us a glimpse of one way to take a derivative of a vectorfield with respect to another.
We define it formally:

Definition 4.11 (Lie Derivative) Let X,Y ∈ X (V) for V open in M. We define LXY = [X,Y] = X(Y) − Y(X) to
be the Lie Derivative of Y with respect to X. If f ∈ C2, we define LX( f ) = X( f ).

Our construction above of LXY was functional. Since we expect it to be meaningful geometrically, we build more
theory to construct LXY by geometric means.
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Definition 4.12 (Continuity) Let M,N be manifolds. Then, we say that a map f : M → N is continuous if for
every W open in N, f −1(W) is open in M.

Definition 4.13 (Differentiable) Let f : M → N, and continuous. Then, we say that f is differentiable at p if for
some chart ψα around p and φα around f (p), the map φα ◦ f ◦ ψα : Img ψα → Img ψβ is differentiable at ψα(p).

Again, we make a remark that this definition is independent of our choice of coordinate chart.

Figure 16: Differentiability of f at p.

Now, given a tangent vector [σ] ∈ TpM, under a differentiable function f : M → N, we have [ f ◦ σ] ∈ T f (p)N.
This is an important effect induced on the tangent space via differentiable maps.

Definition 4.14 (Differential) For a differentiable f : M → N, we define the differential d f : TpM → T f (p)N by:

d f ([σ]) = [ f ◦ σ] = ( f ◦ σ)′(0) = A−1
α (

d
dt
|t=0 φα ◦ ( f ◦ σ))

where φα is a coordinate chart around f (p), and

We give a first use of the differential. Suppose we have a curve σ : (a, b) → M. We want to talk about [σ] at
each s ∈ (a, b) being a tangent vector to σ(s). What we really characterise here is a way to talk about d

dt |t=s in
the manifold setting.

Lemma 4.15

dσ(
∂

∂s
) = [σ(t + s)]

Where ∂
∂s is the standard basis at Ts(a, b).

Proof We note that ∂
∂s = [t + s], and it follows that:

dσ(
∂

∂s
) = A−1

α

(
d
dt
|t=0 (ψα ◦ σ ◦ (t + s))

)
= [σ(t + s)]

�
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Lemma 4.16 The differential is linear.

Proof We check addition. Multiplication by scalar is trivial.

Suppose [σ] + [γ] = [δ]. Let ψα : Uα → R
n be a coordinate chart around p, and φα : Vα → R

m a coordinate chart
around f (p).

Then,

Aα(d f ([δ])) =
d
dt
|t=0 φα ◦ f ◦ δ

=
d
dt
|t=0 (φα ◦ f ◦ ψ−1

α )(ψα ◦ δ)

= D(φα ◦ f ◦ ψ−1
α )

d
dt
|t=0 (ψα ◦ δ)

= D(φα ◦ f ◦ ψ−1
α )(

d
dt
|t=0 (ψα ◦ γ) +

d
dt
|t=0 (ψα ◦ σ)

= Aα(d f ([γ])) + Aα(d f ([σ]))

�

Figure 17: Chain rule on Manifolds.

Lemma 4.17 (Chain Rule on Manifolds)

d(g ◦ f ) = dg ◦ d f

The proof of this should be attempted as an exercise.

Definition 4.18 (Ck Diffeomorphism) A Ck map f : M → N is called a Ck diffeomorphism if there exists a Ck

map g : N → M such that f ◦ g = idN and g ◦ f = idM.

Corollary 4.19 If f is a Ck diffeomorphism, then d f : TpM → T f (p)N is a linear isomorphism.
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Proof Firstly, observe:

d f ◦ g = d(idN) : T f (p)N → T f (p)N

dg ◦ f = d(idM) : TpM → TpM

Also:

dg ◦ d f = id
d f ◦ dg = id

It follows that (d f )−1 exists and is given by dg. �

We now quote an important theorem from the theory of ordinary differential equations.

Theorem 4.20 (Integral Curves in Rn) Let Ω open in Rn. Suppose that X : Ω → Rn is a Ck vectorfield on Ω.
That is exactly X(x1, . . . , xn) = Xi(x1, . . . , xn)ei. Then for any p ∈ Ω, there exists a neighbourhood U of p in Ω, a
δ > 0, and a function F : U × (−δ, δ)→ Rn satisfying:

1. F(x, 0) = x for all x ∈ Ω

2. F(U, t) ⊆ Ω for all t ∈ (−δ, δ) and F(· , t) : U → F(U, t) is a Ck diffeomorphism

3. For any x ∈ Ω fixed, for the curve γ(t) = F(x, t) we have:

d
dt

F(x, t) = (X ◦ F)(x, t) ⇐⇒
dF i

dt
= Xi(F1(x, t), . . . , Fn(x, t)), 1 ≤ i ≤ n

We say that
{
FX

t

}
=

{
FX(· , t)

}
=

{
FX(· , t)

}
t∈(−δ,δ)

is a 1-parameter family of diffeomorphisms generated by X.

Corollary 4.21 (Integral Curves on Manifolds) Let Ω open in M. Suppose that X : Ω → M is a Ck vectorfield
on Ω. Then for any p ∈ Ω, there exists a neighbourhood U of p in Ω, a δ > 0, and a function F : U × (−δ, δ)→ M
satisfying:

1. F(x, 0) = x for all x ∈ Ω

2. F(U, t) ⊆ Ω for all t ∈ (−δ, δ) and F(· , t) : U → F(U, t) is a Ck diffeomorphism

3. For any x ∈ Ω fixed, for the curve γ(t) = F(x, t), we have

d
dt

F(x, t) = [F(x, t + s)] = (X ◦ F)(x, s)

Proof Fix p ∈ Ω, and let ψα : Uα → R
n be a local coordinate chart around p, with coordinates

{
xi
}
. We write:

X(x) = Xi(x)
∂

∂xi

for x ∈ Uα ∩Ω. We define a Ck vectorfield X̃ : ψα(Uα ∩Ω)→ Rn

X̃(y) = Aα((X ◦ ψ−1
α )(y)) = (Xi ◦ ψ−1

α )(y)ei

By the theorem, we can find a neighbourhood Ũ ⊆ ψα(Uα ∩ Ω) around ψα(p) a δ > 0 and a function F̃ :
Ũ × (−δ, δ)→ Rn satisfying:

1. F̃(y, 0) = y

2. F̃(Ũ, t) ⊆ ψα(Uα ∩Ω) and F̃(· , t) : U → F̃(Ũ, t) a Ck diffeomorphism.
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3.

d
dt
|t=0 F̃(y, t + s) = X̃(F̃(y, s)) ⇐⇒

dF̃ i

dt
(y, s) = (Xi ◦ ψ−1

α )(y)

We can now use ψα to pull this back onto the manifold. Define U = ψ−1
α (Ũ), and F : U × (−δ, δ)→ M by:

F(x, t) = (ψ−1
α ◦ F̃)(ψα(x), t)

Firstly, we have:

F(x, 0) = (ψ−1
α ◦ F̃(ψα(x), 0) = ψ−1

α ψα(x) = x

Secondly,

F(U, t) = (ψ−1
α ◦ F̃)(ψα(U), t) = ψ−1

α ◦ F̃(Ũ, t) ⊆ ψ−1
α (ψα(Uα ∩Ω)) = Uα ∩Ω

and F(· , t) : U → F(U, t) is a Ck diffeomorphism since ψα is a diffeomorphism.

Finally, we claim that [F(x, t + s)] = (X ◦ F)(x, s). Compute:

Aα[F(x, t + s)] =
d
dt
|t=0 (ψα ◦ F)(x, t + s)

=
d
dt
|t=0 ψα ◦ ψ

−1
α ◦ F̃(ψα(x), t + s)

=
d
dt
|t=0 F̃ i(ψα(x), t + s)ei

=
dF̃ i

dt
(ψα(x), s)ei

= (Xi ◦ ψ−1
α ) ◦ ψα(x)ei

= Xi(x)ei

= Aα(X(x))

�

We establish a few auxiliary results that will guide us in the geometric construction of the Lie Derivative:

Lemma 4.22 Let X be a vectorfield on Ω open in M. Let ψα : Uα → R
n be a coordinate chart around p ∈ Ω, and

write X = Xi ∂
∂xi in U = Uα ∩Ω. If X(x) = [γx(t)], then

Xi(x) =
d
dt
|t=0 (ψα ◦ γx(t))i

We leave the proof of this as an exercise.

Lemma 4.23 Let F : M → N be a diffeomorphism, and let p ∈ M. Let ψα : Uα → R
n be a coordinate chart

around p with coordinates
{
xi
}

and φα : Vα → R
n a coordinate chart around F(p) with coordinates

{
yi
}
. Let

Fα
α = φα ◦ F ◦ ψ−1

α , and:

(bi
j) =

(
∂Fα,i

α

∂x j

)−1

Then,

(dF)−1(
∂

∂y j ) = bi
j
∂

∂xi
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Proof By construction,

δi j = bi
k
∂Fα,k

α

∂x j

Also, we have:

(dF)(
∂

∂xi ) = A−1
α (D(Fα

α)ei) =
∂Fα, j

α

∂xi

∂

∂y j

Now,

∂

∂xi = (dF)−1 ◦ (dF)(
∂

∂xi ) =
∂Fα, j

α

∂xi (dF)−1(
∂

∂y j )

It follows that:

bi
j
∂

∂xi = bi
j
∂Fα, j

α

∂xi (dF)−1(
∂

∂y j ) = δii(dF)−1(
∂

∂y j ) = (dF)−1(
∂

∂y j )

�

Lemma 4.24 Suppose that (ai
j(t))

−1 = (bi
j(t)), with each bi

j ∈ C1. Then,

dbi
j

dt
= −bi

q
daq

p

dt
bp

j

Now we have the sufficient material to consider the Lie Derivative geometrically.

Theorem 4.25 (Geometric Construction of the Lie Derivative) Let X be a Ck (k ≥ 2) vectorfield in Ω open in
M a Cr manifold for r ≥ 3. Then, at p:

LXY =
d
dt
|t=0 (dFt)−1(Y ◦ F)(p, t)

where Ft = FX
t is the 1 parameter family of diffeomorphisms generated by X at p.

Proof Fix a chart ψα : Uα → R
n at p, with coordinates be

{
xi
}
. We can assume that Ft(U) ⊆ Uα by restricting X

to Uα in applying the Integral Curves Theorem.

Firstly we write X = Xi ∂
∂xi and Y = Y i ∂

∂xi . Also, we use the notation:

Ft,α = Ft ◦ ψ
−1
α

Fα
t = ψα ◦ Ft

Fα
t,α = Fα

α(· , t) = ψα ◦ Ft ◦ ψ
−1
α

Let Ft(p) = q. Then, by the application of Lemma 4.23,

(dF)−1(Y(q) = Y j(q)bi
j(q)

∂

∂xi

Then,

d
dt
|t=0 (dF)−1(Y(q)) =

d
dt
|t=0

(
Y j(q)bi

j(q)
) ∂

∂xi =

dY j(q)
dt
|t=0 bi

j(q)|t=0 + Y j(q)|t=0

dbi
j

dt
|t=0

 ∂

∂xi

24



Figure 18: The curve in the tangent space.

We evaluate each of these quantities.

Firstly,

d
dt
|t=0 Y j(q) =

d
dt
|t=0 Y j(q)

=
d
dt
|t=0 Y j(F(p, t))

=
d
dt
|t=0 (Y j

α ◦ Fα)(p, t)

=
∂Y j

α

∂xi

d
dt
|t=0 Fα,i(p, t)

=
∂Y j

α

∂xi Xi

(By applying Lemma 4.22)

= X(Y j)

Now, notice that:

(bi
j)|t=0 =

∂Fα,i
t,α

∂x j

−1

|t=0 = (δi
j)

since:

Fα
α(x, 0) = (ψα ◦ F0 ◦ ψ

−1
α )(x) = ψα(F(ψ−1

α (x), 0)) = ψα(ψ−1
α (x)) = x

Trivially,

Y j(q)|t=0 = Y j(F(p, 0)) = Y j(p)

25



Now, lastly, by applying Lemma 4.24:

d
dt
|t=0 bi

j = −bi
k(0)

d
dt
|t=0

∂Fα,k
t,α

∂xl bl
j(0)

= −δi
k

d
dt
|t=0

∂Fα,k
t,α

∂xl δl
j

(Computed Previously)

= −
d
dt
|t=0

∂Fα,i
t,α

∂x j

= −
∂

∂x j |x=p

dFα,i
t,α

dt
|t=0


(Since Fα,i

t,α ∈ C2)

= −
∂

∂x j |x=ψα(p)

(
d(ψα ◦ Fα)i

dt
(ψα(x), 0)

)
(We evaluate D(Fα

t,α) at ψα(x)))

= −
∂

∂x j |x=ψα(p)

(
Xi ◦ ψ−1

α (x)
)

= −
∂Xi

α

∂x j

So, putting these together:

d
dt
|t=0 (dF)−1(Y(q)) =

(
X(Y j)δi

j + Y j
(
−
∂Xi

α

∂x j

))
∂

∂xi

= X(Y j)
∂

∂xi − Y j ∂Xi
α

∂x j

∂

∂xi

= X(Y j)
∂

∂xi − Y(Xi)
∂

∂xi

=
(
X(Y j) − Y(Xi)

) ∂

∂xi

= [X,Y]
= LXY

all evaluated at p ∈ M. �

Remark The proof of the geometric construction of the Lie Derivative shows that one cannot avoid the first
derivatives of X. So, the Lie Derivative not only depends on points along X, but neighbourhoods around those
points. This is unlike the familiar derivative operators in Rn which only depend on the point.

Remark As we saw before, we can define the Lie Derivative in a functional way for C1 vector fields on C2

manifolds. Nevertheless, it is still useful to have a geometric interpretation of the Lie Derivative.

Before we look at some examples, we consider and establish some of the properties of the Lie Derivative.

Theorem 4.26 (Properties of the Lie Derivative) Let X,Y ∈X (Ω) and f , g ∈ C2(Ω).

1. L·· is bilinear

2. LXY = −LY X

3. L ∂

∂xi

∂
∂x j = 0, where

{
xi
}

are any local coordinates

4. L f X(gY) = f gLXY + f X(g)Y − gY( f )X
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5. L f X(gY) = L f X(g)Y + gL f XY
(Leibniz Rule for the Lie Derivative)

Proof 1,2,3. Trivial

4. Fix h ∈ C2(Ω). Then,

[ f X, gY]h = f X(gY(h)) − gY( f X(h))
= f (X(g)Y(h) + gX(Y(h))) − g(Y( f )X(h) + f Y(X(h)))
= f X(g)Y(h) − gY( f )X(h) + f g(X(Y(h)) − Y(X(h)))

The result follows since h was arbitrary.

5. From our previous result,

L f X(gY) = f gLX + L f X(g)Y − Y( f )X = L f X(g)Y + g( f LXY −LY ( f )X)

Re-applying the previous result with g = 1,

L f XY = f [X,Y] + f X(1)Y − 1Y( f )X = f LXY −LY ( f )X

The result follows by combining these two expressions.

�

Example Let M = R2, and X(x1, x2) = (−x2, x1).

Figure 19: The vector field X(x1, x2 = (−x2, x1).

Claim: X generates the 1 parameter family of counter clockwise rotation of R2:

F(x, t) = F(x1, x2, t) = (x′1(t), x′2(t)) = (x1 cos t − x2 sin t, x1 sin t + x2 cos t)

and:

dF
dt
|t=0 (x1, x2, t) = (−x2, x1) = X
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Note: that since (1, 0) = ∂
∂x1

and (0, 1) = ∂
∂x2

, then,

X = −x2
∂

∂x1
+ x1

∂

∂x2

We can solve for (dFt)−1( ∂
∂x1

) by elementary geometric methods to find

d
dt = 0

(dFt)−1(
∂

∂x1
) = −

∂

∂x2

Figure 20: Elementary geometric solution to (dFt)−1
(
∂
∂x1

)
.

Now, set Y = ∂
∂x1

. Then,

[X,Y] = [−x2
∂

∂x1
+ x1

∂

∂x2
,
∂

∂x1
]
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5 Tensors

The motivation behind tensors is to construct meaningful algebraic objects on manifolds that are invariant under
coordinate transforms.

5.1 Tensor Spaces

We refresh some familiar details about Vector Spaces. Let V be an n dimensional vector space over R. We
define the dual.

Definition 5.1 (Dual of a Vector Space) Given a vector space V, we denote its Dual as V∗ and define it as:

V∗ = {L : V → R, L Linear}

We note (without proof), some facts about V∗.

Theorem 5.2 (Properties of Finite Dimensional Vector Spaces) Let V be a vector space over R with dim V <
∞. Then:

1. V∗ is also a vector space over R with dim V∗ = dim V.

2. (V∗)∗ = {φ : V∗ → R} � V in the sense that εv : V∗ → R for v ∈ V defined by εv(φ) = φ(v) for each φ ∈ V∗.
Here εv is called the evaluational functional of v, and F : V → (V∗)∗ defined by F(v) = εv defines a linear
isomorphism.

3. If {v1, . . . , vn} forms a basis for V, then
{
η1, . . . , ηn

}
defined by ηi(v j) = δi

j is called the dual basis.

If we set V = TpM, and V∗ = T∗pM, then these quantities are independent of our coordinate system. We want to
generalise V and V∗.

Definition 5.3 (Tensor of type (r, s)) Associated to V, a multilinear functional:

f :

 r�
i=1

V∗
 ×  s�

i=1

V

→ R
is called a tensor of type (r, s).

Definition 5.4 (Tensor Space) The set of all (r, s) type tensors over V forms a vector space over R, denoted by:

V(r,s) =

 r⊗
V
 ⊗  s⊗

V∗


Suppose that V = span {vi} and let V∗ = span
{
ηi
}

the dual basis. Then f ∈ V(r,s) is determined by it’s value by:

(ηi1 , . . . , ηir , v j1 , . . . , v js )

Now, note that:

(vi1 ⊗ . . . ⊗ vir ⊗ η
j1 ⊗ . . . ⊗ η js )(ηk1 , . . . , ηkr , vl1 , . . . , vls ) = δk1

i1
· · · δkr

ir
· δ

j1
l1
· · · δ

js
ls
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Given this notation, it is obvious that every f ∈ V(r,s) can be written as:

f = f i1,...,ir
j1,..., js

vi1 ⊗ . . . ⊗ vir ⊗ η
j1 ⊗ . . . ⊗ η js

This motivates:

Definition 5.5 (Basis of (r, s) Tensor Space) We define the basis of V(r,s) by:{
vi1 ⊗ . . . ⊗ vir ⊗ η

j1 ⊗ . . . ⊗ η js : 1 ≤ ik, jk ≤ n
}

Now, we can begin relating this back to the geometry. Now we know that given a local coordinate chart with
coordinates xi at p, TpM has a basis

{
∂
∂x1 , . . . ,

∂
∂xn

}
. We want to find out the dual basis for T∗pM.

We want the following result for the rest of the discussion.

Lemma 5.6 Let f : V → Rn, with V open in M. Then for u ∈ TpM,

d f (u) = u( f )

Proof Let u = [σ]. Then, from our definition, d f (u) = [ f ◦ σ]. Now, note that f ◦ σ : I → Rn. By the remark
following Definition 3.6, we regard v = [δ] ∈ TpU for U ⊆ Rn as d

dt |t=0 δ. Now [ f ◦ σ] ∈ T f (p)R
n, so it follows that:

d f (u) = [ f ◦ σ] =
d
dt
|t=0 f ◦ σ = u( f )

�

We want to consider functions f : V → R, so that our differential of f is d f : TpM → R, since TpR = R. In
particular, we are concerned with the following type of functions.

Definition 5.7 (Coordinate Functions) Let
{
xi
}

be a coordinate choice with chart ψα : Uα → R
n. We define the

coordinate functions xi : U → R by

(xi ◦ ψ−1
α )(p1, . . . , pn) = pi

We now give a formulation of the dual basis:

Theorem 5.8 (Dual Basis of T∗pM) The functionals dxi : TpM → R form a dual basis for T∗pM.

Proof We’ve previously established that dxi is a linear functional. We only need to check that dxi( ∂
∂x j ) = δi

j. We
compute at p ∈ V:

dxi(
∂

∂x j ) =
d
dt
|t=0 xi ◦ (ψ−1

α ◦ X j) =
d
dt
|t=0 (xi ◦ ψ−1

α ) ◦ (ψα(p) + te j) =
d
dt
|t=0 (ψi

α(p) + tδi
j) = δi

j

�

For the sake of completeness, we introduce the following important terminology.

Definition 5.9 (Vectors and Forms) We call the elements of TpM Vectors, and elements of T∗pM Forms.
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Now, we note that for f ∈ T(r,s)
p M, then locally we can write:

f = f i1,...,ir
j1,..., js

∂

∂x1 ⊗ . . . ⊗
∂

∂xn ⊗ dx j1 ⊗ . . . ⊗ dx js

We introduce some important notation:

Definition 5.10 (Cotangent Bundle) The Cotangent Bundle is given by T∗M:

T∗M =
{
(p, η) : η ∈ T∗pM), p ∈ M

}
Definition 5.11 (Bundle of (r, s) Tensors) The Bundle of (r, s) is denoted by T(r,s)M and given by:

T(r,s)M =
{
(p,T ) : T ∈ T(r,s)

p M, p ∈ M
}

Definition 5.12 (Tensor Field) A tensor field of type (r, s) on M is a function T : M → T(r,s)M such that for each
p ∈ M, T (p) ∈ T(r,s)

p M.

5.2 Lie Derivatives of (r, s) type tensor fields

We begin our discussion considering pairings of vectors with dual vectors. This notation will be important in later
discussions.

Definition 5.13 (Vector-Dual Vector Pairings) Let v ∈ V and A ∈ V∗. Then, we define 〈· , · 〉 : V∗ × V → R by

〈A, v〉 = A(v)

Definition 5.14 (Adjoint) Let V,W be vector spaces. If A : V → W is a linear map, we define the adjoint
A∗ : W∗ → V∗ define by:

〈A∗(ω), v〉 = 〈w, A(v)〉

for all ω ∈ W∗ and v ∈ V.

Now, we relate this back to geometry:

Definition 5.15 (Push Forward) Let f : M → N be differentiable at p ∈ M We define the push forward f∗ at p
as:

f∗ = d f : TpM → T f (p)N

Definition 5.16 (Pull Back) Let f : M → N be differentiable at p ∈ M. Then, we define the pull back f ∗ at p as:

f ∗ = (d f )∗ : T∗f (p)N → T∗pM

Remark To emphasise for clarity: For any η ∈ T∗f (p)N, then f ∗(η) ∈ T∗pM via:

〈 f ∗(η), ν〉 = 〈η, f∗(ν)〉

for every ν ∈ TpM.

We firstly establish what the pull back looks like under local coordinate charts.
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Lemma 5.17 Let f : M → N be differentiable at p, and let ψα : Uα → R
n be a coordinate chart around p with

coordinates
{
xi
}
, and φα : Uα → R

n be a coordinate chart around f (p) with coordinates
{
y j

}
. Then:

f∗(
∂

∂xi ) =
∂ f α, jα

∂xi

∂

∂y j

and

f ∗(dy j) =
∂ f α, jα

∂xi dxi

Proof The first result is immediate from the definition of d f .

For the second, fix νi ∂
∂xi ∈ TpM. Then,

〈 f ∗(dy j), νi ∂

∂xi 〉 = 〈dy j, νi ∂

∂xi
∗

〉 = 〈dy j, νi
∂ f α

α,k

∂xi

∂

∂yk 〉 = νi
∂ f αα, j
∂xi

This implies:

f ∗(dy j) =
∂ f αα, j
∂xi dxi

�

Remark Note that this result shows that:

f∗ ∈ T∗pM ⊗ T f (p)N

f ∗ ∈ T f (p)N ⊗ T∗pM

via the observation:

f∗ =
∂ f αα, j
∂xi dxi ⊗

∂

∂y j

f ∗ =
∂ f αα, j
∂xi

∂

∂y j ⊗ dxi

Remark If we write D f∗ =

(
∂ f αα, j
∂xi

)
, then it follows that D f∗T = D f ∗, the transpose.

Remark This result also gives a rigorous interpretation of ODEs:

dy = f (x, y)dx

We also want to consider pull backs and push forwards of tensor fields:

Definition 5.18 (Push Forward, Pull Back of Tensor Fields) Let F : M → N be differentiable at p. Let ψα :
Uα → R

n be a local chart around p, and φα : Vα → R
n a chart around F(p). Let

S = si1,...,ik ∂

∂xi1
⊗ . . . ⊗

∂

∂xik
∈ T(k,0)

p M

T = t j1,..., jk dy j1 ⊗ . . . ⊗ dy jk ∈ T(0,k)
p N

Then, we define the push forward of S by F as:

F∗(S ) = si1,...,ik F∗(
∂

∂xi1
) ⊗ . . . ⊗ F∗(

∂

∂xik
) ∈ T(k,0)

p N
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If F is surjective, we can define the pull back of T by F as:

F∗(T ) = t j1,..., jk F∗(dy j1 ) ⊗ . . . ⊗ F∗(dy jk ) ∈ T(0,k)
p M

If F is a diffeomorphism, and:

C = ci1,...,ik
j1,..., jk

∂

∂xi1
⊗ . . . ⊗

∂

∂xik
⊗ dx j1 ⊗ . . . ⊗ dx jk ∈ T(k,l)

p M

D = di1,...,ik
j1,..., jk

∂

∂yi1
⊗ . . . ⊗

∂

∂yik
⊗ dy j1 ⊗ . . . ⊗ dy jk ∈ T(k,l)

p N

then, we can define the push forward and pull back as:

F∗(C) = ci1,...,ik
j1,..., jk

F∗(
∂

∂xi1
) ⊗ . . . ⊗ F∗(

∂

∂xik
) ⊗ (F∗)−1(dx j1 ) ⊗ . . . ⊗ (F∗)−1(dx jk )

F∗(C) = ci1,...,ik
j1,..., jk

(F∗)−1(
∂

∂xi1
) ⊗ . . . ⊗ (F∗)−1(

∂

∂xik
) ⊗ F∗(dx j1 ) ⊗ . . . ⊗ F∗(dx jk )

Now we have the sufficient machinery to move onto considering Lie Derivatives of tensor fields by vector fields.
Recall that given a vector field X, we can find a 1-parameter family of diffeomorphisms {Ft} and that dFt : TpM →
TFt(p)M is a linear isomorphism. This also means that the adjoint map (dFt)∗ : T f (p)M∗ → T∗pM is also a linear
isomorphism.

This allows us to make the following definition.

Definition 5.19 (Lie Derivative of Tensor Fields) Let X be a vector field, and let T be a (r, s) tensor field. Then
we define the lie derivative at p by:

LX(T )(p) =
d
dt
|t=0 (F∗t )−1(T (Ft(p)))
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6 The Affine Connection

As mentioned previously, the Lie Derivative of Y with respect to a vectorfield X depends not only on X, but at
each point, a small neighbourhood around X. This is unlike our directional derivatives, where the derivative is
dependent only at each point.

Our goal here is a way to differentiate vector fields by vector fields such that the derivative of the vector field is
only dependent on each point.

6.1 Connection on Manifolds

Definition 6.1 (Affine Connection) Suppose M is Cr, r > 1. An affine connection on M is a map,

∇ : X 0(M) ×X 1(M)→X 0(M)

such that:

1. For X,Y ∈X 0(M),Z ∈X 1(M), and f , g : M → R,

∇ f X+gYZ = f∇XZ + g∇YZ

2. For X ∈X 0(M),Y,Z ∈X 1(M), and constants α, β ∈ R,

∇X(αY + βZ) = α∇XY + β∇XZ

3. For X ∈X 1(M),Y ∈X 0(M), and f differentiable,

∇X( f Y) = X( f )Y + f∇XY

Such a map is also called a covarient derivative.

Remark If f is a differentiable function, we could define

∇X f = X( f )

Then, the last rule indeed “looks” like a Leibniz rule.

Remark Notice that ∇ : X 0(M) ×X 1(M) → X 0(M). It does not make sense (yet!) to compute: ∇XY, where
X ∈X 0(U), or Y ∈X 1(U) where U ( M. This is because our connection ∇ is a global structure on M.

Remark Unlike the Lie Derivative, there are many such connections, and every affine connection does not arise
from some deep property of the manifold. Rather, connections are external structures imposed on the manifold.

Lemma 6.2 The Lie Derivative is not a connection.

Proof Firstly, notice that

L : X 1(M) ×X 1(M)→X 0(M)

That is, it doesn’t make sense to consider LXY, where X ∈ X 0(M). But even if we altered our definition of the
affine connection as a map from and into X ∞(M), we can show that the first condition fails by considering:

L f XY = f LXY − X( f )Y , f LXY

in general. �
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We establish a few auxiliary results that will enable us to show why such a connection only depends on only the
points along the vectorfield. Our general approach is to “restrict” vectorfields to 0 outside an open set containing
p, and show that they are still equal to the original vectorfield inside the neighbourhood.

Lemma 6.3 (Cutoff in Rn) There exists a smooth function ξ : Rn → [0, 1] such that:

ξ(x) =

1 x ∈ B1(0)
0 x ∈ Rn \ B2(0)

Corollary 6.4 (Cutoff on Manifolds) Let p ∈ M. Then for any neighbourhood U of p, there exists a neighbour-
hood K around p such that K b U, and a differentiable η : M → [0, 1] such that:

η(x) =

1 x ∈ K
0 x ∈ M \ U

Proof Since we have a maximal differentiable structure D associated with M, we can find a coordinate chart
ψα : Uα → B3(0). with Uα ⊆ U. Then, define

η̂(x) = (ξ ◦ ψα)(x)

So, we have that:

η̂(x) =

1 x ∈ ψ−1
α (B1(0))

0 x ∈ Uα \ ψ
−1
α (B2(0))

So, extend η̂ to η by:

η(x) =

η̂(x) x ∈ Uα

0 x ∈ M \ Uα

�

Now, we prove our first result regarding the local properties of ∇.

Lemma 6.5 Let X ∈X 0(M),Y ∈X 1(M). Let U open in M, and suppose X|U = 0 or Y |U = 0. Then,

∇XY(p) = 0

for all p ∈ U.

Proof For the first case, fix p ∈ U. By Corollary 6.4, we can find a K b U, and a function ξ : M → R such that
ξ = 1 in K, and ξ = 0 outside of U.

Since f differentiable, the vectorfield X̂ = f X is also differentiable. Also, X̂ = 0 everywhere. Now, it follows that:

0 = ∇ f XY = f∇XY

But by construction f (p) = 1, so

0 = f (p)∇XY(p) = ∇XY(p)

For the second case, again, fix p ∈ M. We follow the same trick, and this time define Ŷ = f Y. Then,

0 = ∇X( f Y) = X( f )Y + f∇XY

Now, since Y |U = 0, in particular Y(p) = 0, and as before f (p) = 1. So,

0 = X( f )Y(p) + f (p)∇XY(p) = ∇XY(p)

�
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Corollary 6.6 Let X1, X2 ∈ X 1(M) and Y1,Y2 ∈ X 0(M), satisfying X1 = X2 and Y1 = Y2 on some U open in M.
Then ∇X1 Y1 = ∇X2 Y2 on U.

Proof Apply the lemma to X = (X1 − X2)|U = 0, and Y = (Y1 − Y2)|U = 0. �

These results highlight an important fact. They allow us to localise any affine connection ∇, motivating the
following definition.

Definition 6.7 (Local Affine Connection) Let U be open in M, and X ∈ X 0(U) and Y ∈ X 1(U). Then, we
define ∇ : X 0(U) ×X 1(U)→X 0(U) as:

∇XY(p) = ∇X̂Ŷ(p)

for any X̂ ∈X 1(M), Ŷ ∈X 0(M) satisfying X̂|W = X|W , and Ŷ |W = Y |W for any open W containing p.

Remark This definition is well defined by the previous corollary because given X̃, and Ỹ satisfying X̃|W = X,
Ỹ |W = Y, and by applying the result, we get ∇X̂Ŷ(p) = ∇X̃Ỹ(p)

By localisation, we introduce an important geometric object.

Definition 6.8 (Christoffel Symbols) Let ψα : Uα → R
n be a coordinate chart with coordinates

{
xi
}
. We define

the Christoffel Symbols
{
Γk

i j

}
of ∇ associated with

{
xi
}

by:

∇ ∂

∂xi

∂

∂x j = Γk
i j
∂

∂xk

Lemma 6.9 Let ψα : Uα → R
n have coordinates

{
xi
}
. Then ∇ in Uα is completely determined by the Christoffel

symbols.

Proof Let X = Xi ∂
∂xi ,Y = Y j ∂

∂x j . Then,

∇XY = ∇Xi ∂

∂xi

(
Y i ∂

∂x j

)
= Xi

(
Y j∇ ∂

∂xi

∂

∂x j +
∂

∂xi (Y j)
∂

∂xi

)
= XiY jΓk

i j
∂

∂xk +
∂

∂xi (Y j)
∂

∂xi

and the result follows. �

6.2 Parallel Transport

In this section, we give a useful theoretical application of an affine connection on a Manifold. We illustrate how
such a structure can be used to “connect” two different tangent spaces.

Note that from this section onwards we begin to liberally use the notation σ′(t) to denote tangent vectors.

Definition 6.10 (Vector Field Along a Curve) Let σ : I → M be a differentiable curve. A vector field along σ is
a map V : I → TM such that V(t) ∈ Tσ(t)M and π ◦ V = σ, where π : TbM → M is the canonical projection.

Remark Given such a vectorfield along a curve, we could assert the existence of a vectorfield Ṽ on M such that
Ṽ ◦ γ = V.
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Definition 6.11 (Parallel Vectorfield) We say that a vectorfield V along a curve σ is parallel if:

∇σ′(t)V = 0

Remark We need to take a moment to fully appreciate this formulation. It is deep and non trivial. We began with
a connection ∇ which is a global property of a manifold, and we showed it depends only at each point p ∈ M.
This is why we can formulate this definition at all.

Ideally, we want to compute a parallel vectorfield inside some chart. First, we require the following important
definition.

Definition 6.12 Let V be a vectorfield along σ, and write V = V i ∂
∂xi in Uα. Then,

σ′(t)(V i) = σ′(t)(Ṽ i)

where Ṽ is a vectorfield on M such that Ṽ |γ(t) = V with Ṽ = Ṽ i ∂
∂xi in Uα.

Lemma 6.13

σ′(t)(V j) =
d
dt

V j

Proof We compute:

σ′(t)(V j) = σ′(t)(Ṽ j) =
d
dt

(Ṽ j ◦ σ) =
d
dt

V j

�

We have the following important result.

Theorem 6.14 Let V be a vectorfield along σ. Then V is parallel if and only if

V̇ + V jσ̇α,iΓk
i j = 0

for all k and every coordinate chart Uα.

Proof Fix t ∈ I, and a chart ψα around t. Then, σ′(t) = σ̇α,i(t) ∂
∂xi , and V = V j ∂

∂x j

∇σ′(t)V = ∇σ′(t)

(
V j ∂

∂x j

)
= σ′(t)(V j)

∂

∂x j + V j(t)∇σ̇α,i ∂

∂xi

∂

∂x j

= V̇ j(t)
∂

∂x j + V j(t)σ̇α,i(t)Γk
i j
∂

∂xk

=
(
V̇k(t) + V j(t)σ̇α,i(t)Γk

i j

) ∂

∂xk

Then, it follows that ∇σ′(t)V = 0 if and only if(
V̇k(t) + V j(t)σ̇α,i(t)Γk

i j

) ∂

∂xk = 0

and the result follows. �

We note the following important lemma without proof.

37



Lemma 6.15 Let σ : [0, 1]→ M. Then the ODE(
V̇k(t) + V j(t)σ̇α,i(t)Γk

i j

) ∂

∂xk = 0

has a there exists a unique solution to V along σ given an initial condition V(0) = v.

Remark ODE theory guarantees us there exists a unique solution to V inside some fixed coordinate chart. By
coordinate transforms, we can extend this solution to the entire domain of Img σ.

Example Put M = Rn, with standard coordinates (x1, . . . , xn). Then, any connection ∇ is determined by the
Christoffel symbols in Rn. So, we take Γk

i j ≡ 0.

Now, it follows that:

∇σ′(t)V = 0 ⇐⇒ V̇k(t)∀k ⇐⇒ Vk(t) = ξk

So, parallel actually means that the vector is parallel along our curve (since V is constant).

We can now illustrate how the affine connection can be used to connect two tangent spaces along a curve.

Definition 6.16 (Parallel Transport) Let σ : [0, 1] → M. Then, we define parallel transport by the map Φσ :
Tσ(0)M → Tσ(1)M where

Φσ(v) = ṽ

where V is the unique solution to the ODE with the initial condition V(0) = v and V(1) = ṽ.

We note importantly that:

Lemma 6.17 Φσ : Tσ(0)M → Tσ(1)M is a linear isomorphism.

Remark Without a connection, we have no way of associating two tangent spaces together. We can in fact
define ∇ backwards by looking maps ∇ giving rise to Parallel Transport maps.

Remark The differentiability of σ implies that the underlying points of the tangent spaces being parallel trans-
ported need to lie in the same connected component.

Remark Given another curve γ, we have that in general Φσ , Φγ.
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7 Curvature and Metrics

So far, we have considered an abstract connection. We can get quite far without imposing further structure.
Parallel transport is one immediate consequence, but so is the curvature tensor. We will introduce this initially to
highlight that further structure is unnecessary. We shall see how we can do quite a lot more by imposing extra
structure on our connection.

7.1 Curvature

Definition 7.1 (Reimannian Curvature Operator) Let X,Y,Z ∈X (M). We define the curvature operator R (·, ·) (·) :
X (M) ×X (M) ×X (M)→X (M):

R (X,Y) Z = ∇X(∇YZ) − ∇Y (∇XZ) − ∇LXYZ

Remark The curvature operator is a (1, 3) tensor field since R (X,Y) Z is a (0, 1) tensor. In fact, this is often
referred to as the Curvature Tensor.

Theorem 7.2 (Function Linearity of the Curvature Operator) R (·, ·) (·) is function linear.

Proof Compute:

R (X,Y) ( f Z) = ∇X(∇Y ( f Z)) − ∇Y (∇X( f Z)) − ∇LXY ( f Z)
= ∇X(Y( f )Z + f∇YZ) − ∇Y (X( f )Z + f∇XZ) −LXY( f )Z − f∇LXYZ

= XY( f )Z + Y( f )∇XZ + X( f )∇YZ + f∇X(∇YZ)
− YX( f )Z − X( f )∇YZ − Y( f )∇XZ − f∇Y (∇XZ)
− (X(Y f ) − Y(X f ))Z − f∇LXYZ

= f∇X(∇YZ) − f∇Y (∇XZ) − f∇LXYZ

= f R (X,Y) Z

Similarly for R ( f X,Y) Z,R (X, f Y) Z. �

Corollary 7.3 R (·, ·) (·) can be localised to any U open in M.

The proof of this is similar to the localisation of the affine connection and is left as an exercise.

Corollary 7.4 R (X,Y) (Z) only depends on X(p),Y(p),Z(p) for every p ∈ M.

Proof Let ψα : Uα → R
n be a local coordinate chart with coordinates

{
xi
}
. We write X = Xi ∂

∂xi , Y = Y j ∂
∂xk , and

Z = Zk ∂
∂xk . Then, by localisation and function linearity, we have

R (X,Y) Z = XiY jZkR

(
∂

∂xi ,
∂

∂x j

) (
∂

∂xk

)
and the result follows. �

To use this curvature tensor to construct other curvatures on a manifold requires us to impose further restrictions
on our connection.
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7.2 The Metric

The usual inner product in Rn allows us to measure the lengths and angles of vectors. Our goal is to consider
the way in which a metric can interact with a specific type of connection.

Definition 7.5 (Reimannian Metric) A Riemannian Metric g on M is a (0, 2) tensor field such that at each p ∈ M,
g is an inner product on TpM.

Another important product we consider is:

Definition 7.6 (Lorenzian Product) Let V be a vector space over R. A Lorentzian product is a symmetric
bilinear functional 〈·, ·〉 : V × V → R such that there exists a basis {v1, . . . , vn} of V and:

〈vi, v j〉 =

−1 i = j = 1
δi j otherwise

We can now define an important a slightly different type of metric on a manifold.

Definition 7.7 (Lorenzian Metric) A Lorentzian Metric g on M is a (0, 2) tensor field such that at each p ∈ M, g
is a Lorentzian product on TpM.

Remark To show the existence of such a structure on any manifold, we need a Partition of Unity. This is done
later in §8.

Definition 7.8 (Reimannian/Lorenzian Manifold) If M is a manifold equipped with a Riemannian/Lorentzian
metric g, then we say that (M, g) is a Riemannian/Lorentzian Manifold.

Now, we require some more notation to make a link between connections and metrics.

Definition 7.9 (Torsion Free) We say that a connection ∇ is Torsion Free if for all X,Y ∈X (M),

∇XY − ∇Y X = LXY

Lemma 7.10 ∇ is torsion free if and only if Γk
i j = Γk

ji for all coordinate charts.

The proof is left as an exercise.

Definition 7.11 (Metric Compatible) Let 〈·, ·〉 be a metric on M. Then, we say that a connection ∇ is metric
compatible with 〈·, ·〉 if for all X,Y,Z ∈X (M),

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉

Definition 7.12 (Levi-Civita Connection) Let 〈·, ·〉 be a metric on M, and ∇ a connection. If ∇ is torsion free
and metric compatible with 〈·, ·〉, then we say that ∇ is a Levi-Civita connection.

Definition 7.13 (Non Degenerate (0, 2) Tensor Field) Let V be a vector space over R, and T ∈ V∗ ⊗ V∗. If for
all v ∈ V, T (u, v) = 0 implies u = 0, then we say that T is non degenerate.
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Theorem 7.14 Let 〈·, ·〉 be a symmetric non degenerate (0, 2) tensor field on M. Then there exists a unique ∇
such that for all X,Y,Z ∈X (M),

1. ∇XY − ∇Y X = LXY

2. X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉

Proof Fix X,Y,Z ∈ X (M). By the non degeneracy hypothesis on 〈·, ·〉, it suffices to define ∇XY by defining
〈∇XY,Z〉. We proceed the proof by assuming such a connection exists to compute an expression for 〈∇XY,Z〉.

We note that:

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉

Y〈Z, X〉 = 〈∇YZ, X〉 + 〈Z,∇Y X〉

Z〈X,Y〉 = 〈∇Z X,Y〉 + 〈X,∇ZY〉

Then, it follows that:

X〈Y,Z〉 + Y〈Z, X〉 − Z〈X,Y〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉 + 〈∇YZ, X〉 + 〈Z,∇Y X〉 − 〈∇Z X,Y〉 + 〈X,∇ZY〉

= 〈∇XY,Z〉 + 〈∇Y X,Z〉 + 〈∇XZ,Y〉 − 〈∇Z X,Y〉 + 〈∇YZ, X〉 − 〈∇ZY, X〉

= 2〈∇XY,Z〉 − 〈∇XY,Z〉 + 〈∇Y X,Z〉 + 〈LXZ,Y〉 + 〈LYZ, X〉

= 2〈∇XY,Z〉 − 〈LXY,Z〉 + 〈LXZ,Y〉 + 〈LYZ, X〉

So, we define:

〈∇XY,Z〉 =
1
2

(〈LXY,Z〉 − 〈LXZ,Y〉 − 〈LYZ, X〉 + X〈Y,Z〉 + Y〈Z, X〉 − Z〈X,Y〉)

We leave it as an exercise to check that defining ∇ in this way indeed gives the result. �

Corollary 7.15 (Existence of Levi-Civita Connection) For every Riemannian Manifold (M, 〈·, ·〉), there exists
a unique Levi-Civita connection.

The proof of this is immediate, since it is easy to check that a Riemannian metric is indeed a (0, 2) non degenerate
tensor field.

Example Take M = Rn. Let X,Y ∈ X (M). So, with the standard coordinates
{
xi
}
, we can write X = Xi ∂

∂xi ,Y =

Y j ∂
∂x j . We equip M with the usual metric 〈X,Y〉 = XiYi.

Define ∇XY = DXY i ∂
∂xi . We check that this is indeed metric compatible:

X〈Y,Z〉 = X(Y iZ j) = DX(Y i)Zi + Y iDX(Zi) = 〈∇XY,Z〉 + 〈Y,∇XZ〉

Example Let M ⊆ Rn+k an n-submanifold. Assume that we have the usual metric 〈·, ·〉 as defined previously in
Rn+k.

Let v,w ∈ TpM, and define:

〈v,w〉M = 〈v,w〉

Let X,Y,Z ∈X (M). We have:

Z〈X,Y〉M = 〈∇Z X,Y〉 + 〈X,∇ZY〉
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We want:

〈∇Z X,Y〉 + 〈X,∇ZY〉 = 〈∇M
Z X,Y〉M + 〈X,∇M

Z Y〉M

where ∇M is the connection on M. We look for something stronger:

〈∇Z X,Y〉 = 〈∇M
Z X,Y〉M

〈X,∇ZY〉 = 〈X,∇M
Z Y〉M

We define:

∇M
X Y = (∇Z X)⊥

where ⊥: TpR
n+k → TpM giving us the connection we want.

7.3 More Curvature

In this section, we give a brief survey of other useful curvatures on a manifold. Although we can define the
curvature tensor with an abstract connection, we can construct many other curvatures with desirable properties
by considering R (·, ·) (·) given by the unique Levi-Civita ∇ on a manifold (M, 〈·, ·〉).

Definition 7.16 (Curvature 4-Tensor) We define R (·, ·, ·, ·) : X (M) ×X (M) ×X (M) ×X (M)→ R by:

R (X,Y,Z,W) = 〈R (X,Y) Z,W〉

Theorem 7.17 (Properties of the Curvature 4-Tensor) Let (M, 〈·, ·〉) with Levi-Civita connection ∇. Then, for
all X,Y,Z,W ∈X (M),

1. R (X,Y,Z,W) + R (Y,Z, X,W) + R (Z, X,Y,W) = 0

2. R (X,Y,Z,W) = −R (Y, X,Z,W)

3. R (X,Y,Z,W) = −R (X,Y,W,Z)

4. R (Z,W, X,Y) = R (X,Y,Z,W)

The proof of this is left as an exercise.

We now move onto briefly consider some other useful curvatures on a Manifold.

Definition 7.18 (Perpendicular Tangent Vectors) We say that u, v ∈ TpM are perpendicular if 〈u, v〉 = 0 and
we write u ⊥ v.

Definition 7.19 (Length of a Tangent Vector) We define the length of a tangent vector u ∈ TpM to be:

‖u‖ =
√
〈u, u〉

Definition 7.20 (Sectional Curvature) Let u, v ∈ TpM with u ⊥ v and ‖u‖ = ‖v‖ = 1. Then, the sectional
curvature of P = span {u, v} is given by:

k(u, v) = −R (u, v, u, v) = R (u, v, v, u)
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Definition 7.21 (Ricci Curvature) Let {ei} be an orthonormal basis for TpM. Let X,Y ∈X (M). Then, we define
Ricci Curvature as:

Ric (X,Y) = Σn
i=1R (X, ei, ei,Y)

Remark The Ricci Curvature is sometimes referred to as the Ricci Tensor, because in fact Ric (·, ·) is a (0, 2)
tensor field.

Lemma 7.22 Ric (X,Y) = Ric (Y, X)

The proof of this follows trivially from the definition of the 4 Tensor.

Lemma 7.23 Let X ∈ X (M) and choose an orthonormal basis at p to TpM such that e1 is in the direction of X.
Then,

Ric (X, X) = Σn
i=2‖x‖

2Ric (e1, ei, ei, e1)

Again the proof of this fact follows trivially from the definition.

Definition 7.24 (Scalar Curvature) Given an orthonormal basis {ei} to TpM, the scalar curvature RS is given
by:

RS = Σn
i=1Ric (ei, ei)

Remark Trivially, we can see that RS = 2Σ1≤i≤ j≤nk(ei, e j)
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8 Existence of Metrics

We have mentioned metrics previously and used them in various calculations. However, the question of whether
such structures exist was not dealt with previously. Here, we prove that every manifold M has an associated
metric (in fact, many metrics).

8.1 Partitions of Unity

We firstly need some topological notions.

Definition 8.1 (Locally Finite) Let A = {Aα : α ∈ Λ} ⊆ P(M), where Λ is some index set. If for any p ∈ M,
there exists a neighbourhood U of p such that U ∩ Aα , ∅ for only finitely many α ∈ Λ, then we say that A is
locally finite.

Definition 8.2 (Partition of Unity) A Partition of Unity on M is a collection F = { fα : α ∈ Λ} ⊆ C∞C (M) such
that:

1. fα ≥ 0 for all α ∈ Λ

2.
{
spt fα : α ∈ Λ

}
is locally finite

3. Σα∈Λ fα(x) = 1 for all x ∈ M

Remark It is really due to the locally finite condition that we can make sense of the sum.

Definition 8.3 (Subordinate Parition of Unity) Let U = {Uα : α ∈ Ξ} and open cover of M. Then, a partition of
unity F = { fα : α ∈ Λ} is said to be subordinate to U if for every α ∈ Λ, there exists a δ ∈ Ξ such that spt fα ⊆ Uδ.

We quote the following important result without proof.

Theorem 8.4 (Existence of Countable Subordinate Partition of Unity) Let U be an open covering of M. Then
there exists a countable partition of unity F subordinate to U .

Corollary 8.5 Let G open in M. Let A ⊆ G closed in G. Then, there exists a smooth φ : M → [0, 1] such that:

1. φ ≡ 1 for all x ∈ A

2. φ ≡ 0 for all x ∈ M \G.

Proof Let C = {G,M \ A}. Trivially C is an open cover for M. By the theorem, we have a countable partition
of unity F = { fi : i ∈ N} subordinate to C . By this subordinate condition, we have that for each i ∈ N, either
spt fi ⊆ G or spt fi ⊆ M \ A, but not both.

Define φ : M → [0, 1] by:

φ(x) = Σspt fi⊆G fi(x)

Now, if x ∈ A, then since A ⊆ G, we have φ(x) = 1. Again, by construction of φ, we have that φ(x) = 0 for all
x ∈ M \G �
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We need one further auxiliary result without proof.

Lemma 8.6 Let V be a vector space. Then the space of positive definite bilinear forms on V is convex.

Now we can finally prove the existence result for metrics on manifolds.

Corollary 8.7 (Existence of a Metric) There exists a metric g on a manifold M.

Proof Let U = {Uα : ψα : Uα → R
n}. By the theorem, we are guaranteed a countable partition of unity F

subordinate to U . That is exactly, for every i ∈ N, there exists an αi such that spt fi ⊆ Uαi .

Since Uαi is associated to ψαi , we have a coordinate chart. Using ψαi we can pull back any metric in Img ψαi . Let
this metric be gi.

Now, we have that figi is a (0, 2) tensor field that vanishes outside Uαi . Define:

g(x) = Σi fi(x)gi(x)

Since fi come from a partition of unity, at each x ∈ M, we have that Σi fi(x) = 1, and since the space of metrics
is convex, g is a positive definite metric. �

Remark Since we pull back each gi from Rn, and since there are infinitely many metrics on Rn, for every
manifold, there are infinitely many metrics.
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Notation

(M,D) Manifold given by set M and differentiable structure D

(M, g) Riemannian/Lorentzian Manifold M with metric g

[σ(t + s)] Tangent vector at σ(s)

[σ] Tangent vector at σ(0)

Γk
i j Christoffel symbols of ∇ in a given coordinate system

∇XY Covarient Derivative of Y with respect to X

δi j Kronecker delta

DF(x) Jacobian of F evaluated at x

T∗M Cotangent Bundle

V∗ Dual of the vector space V

d f The differential of f

Img F Image of F

Int D The interior of the set D

LXY Lie Derivative of Y with respect to X

∂
∂xi Basis Vector for TpM for coordinates

{
xi
}

f ∗ Pull back by differentiable f

f∗ Push forward by differentiable f

R (·, ·, ·, ·) Same as 〈R (·, ·) (·), ·〉, the curvature 4-Tensor

R (·, ·) (·) Riemannian Curvature Operator

Rn n-dimensional Euclidean Space

RPn n dimensional Real Projective Plane

Ric (X,Y) Ricci Curvature

RS Sectional Curvature{
FX

t

}
,
{
FX(· , t)

}
1-parameter family of diffeomorphisms generated by vectorfield X

σ′(t) For a curve σ, tangent vector at σ(t)

T(r,s)M Bundle of (r, s) Tensors

TM Tangent Bundle of M

TpM Tangent Space to M at p

X k(V) Set of Ck vectorfields on V

Cr(Rn),Cr Same as Cr(Rn,R)

Cr(Rn,Rm) r-differentiable (r > 0)/continuous (r = 0) functions from Rn to Rm

F|V Restriction of F to V

fα The function fα = f ◦ ψ−1
α , for coordinate chart ψα

K b U K open in U and K ⊆ U and compact

u ⊗ v Tensor product of u and v
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V(r,s) Vector Space of (r, s) type tensors over vector space V

X⊥ Projection of X to the subspace in context

Diffeomorphism Differentiable bijection with differentiable inverse
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Index

Ck Diffeomorphism, see Diffeomorphism

Abstract Manifold, see Manifold
Adjoint, 31
Affine Connection, 34

Basis, 30
Basis of Tensor Space, 30
Basis Vector, 11
Bundle of (r, s) Tensors, 31

Chain Rule, 21
Christoffel Symbols, 36
Compatible, 6
Continuity, 20
Coordinate Functions, 30
Cotangent Bundle, 31
Covarient Derivative, 34
Curvature 4-Tensor, 42

Diffeomorphism, 21
Differentiability of Vector Field, 18
Differentiable, 16, 20
Differentiable Curve, 8
Differential, 20
Differential Structure, 5
Directional Derivative, 16
Dual Basis of T∗pM, 30
Dual of a Vector Space, 29

Einstein’s Summation Convention, 1
Existence of a Levi-Civita Connection, 41
Existence of a Metric, 45

Forms, 30

Geometric Construction of the Lie Derivative, 24

Integral Curves in Rn Theorem, 22
Integral Curves on Manifolds Theorem, 22
Inverse Function Theorem, 1

Length of a Tangent Vector, 42
Levi-Civita, 40
Lie Derivative, 19
Lie Derivative of Tensor Fields, 33
Local Affine Connection, 36
Local Coordinate Chart, 6
Local Parametrisation, 6
Local parametrisation, 2
Localisation of an Affine Connection, 36
Locally Finite, 44
Lorentzian Manifold, 40
Lorentzian Metric, 40
Lorentzian Product, 40

Manifold, 6
Manifold Topology, 16

Maximal Differentiable Structure, 6
Metric Compatible, 40

Non Degenerate (0, 2) Tensor Field, 40

One Parameter Family of Diffeomorphisms, 22
Open Set, 16

Parallel Transport, 38
Parallel Vectorfield, 37
Partition of Unity, 44
Perpendicular Tangent Vectors, 42
Properties of Finite Dimensional Vector Spaces, 29
Properties of the Curvature 4-Tensor, 42
Properties of the Lie Derivative, 26
Pull Back, 31
Pull Back of a Tensor Field, 32
Push Forward, 31
Push Forward of a Tensor Field, 32

Real Projective Plane, 6
Ricci Curvature, 43
Ricci Tensor, 43
Riemannian Curvature Operator, 39
Riemannian Curvature Tensor, 39
Riemannian Manifold, 40
Riemannian Metric, 40

Scalar Curvature, 43
Sectional Curvature, 42
Smoothness of Vector Field, 18
Submanifold, 2
Subordinate Partition of Unity, 44

Tangent Bundle, 13
Tangent Space, 11
Tangent Vector, 11
Tensor, 29
Tensor of type (r, s), 29
Tensor Space, 29
Tensor Spaces, 29
Tensors, 29
Torsion Free, 40

Vector Field, 18
Vector Field along a Curve, 36
Vector-Dual Pairing, 31
Vectors, 30
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