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Setting and general problem

Compact boundaryless manifold (M, g) of dimension n ≥ 2.

Eigenfunctions:

−∆ej(x) = λ2
j ej(x),

∫
|ej |2 dV = 1

Give fundamental modes of vibration: uj(t, x) = cos tλj ej(x).

Vague Question: How can you detect and measure various types of
concentration of eigenfunctions (or, more generally, quasi-modes)?

As uj(t, x) provide high-frequency solutions of wave equations,
(∂2

t −∆)uj = 0, expect answer to depend on long-term dynamics of
geodesic flow (e.g., propagation of singularities for ∂2

t −∆)

“Global harmonic analysis” or Harmonic/Globlal analysis
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Extreme behavior on round spheres, Sn

Consider the standard sphere

Sn = {x ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}

Eigenvalues of
√
−∆Sn are√

k(k + n − 1) ≈ k ,

repeating with highest possible multiplicity

dk ≈ kn−1

(very non-generic).

Eigenfunctions are spherical harmonics, restrictions of homogeneous
harmonic polynomials in Rn+1 to Sn.
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Extreme concentration at points

L2-normalized zonal functions Zk(x), by classical Darboux-Szegö formula:

Zk(x) ≈ cos
(
(k + n−1

2 )d(x ,±1) + σn
)
/
(
(d(x ,±1)

) n−1
2 , if d(x ,±1) ≥ k−1

and |Zk(x)| = O(k
n−1

2 ) if d(x ,±1) ≤ k−1, where

1 = (1, 0, . . . , 0)

denotes north pole and d(x , y) distance on Sn and σn = −(n − 1)π/4
(Maslov factor).

High concentration at poles ±1.

Easy calculation using above:

‖Zk‖Lp(Sn) ≈ kn( 1
2
− 1

p
)− 1

2 , p ≥ 2(n+1)
n−1 . (1)
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Extreme concentration along periodic geodesics

Highest weight spherical harmonics,

Qk(x) ≈ k
n−1

4 (x1 + ix2)k

have extreme concentration near equator (periodic geodesic)

γ = {x ∈ Sn : 0 = x ′ = (x3, . . . , xn+1)}.

Simplest example of “Gaussian beams”,

|Qk(x)| ≈ k
n−1

4 e−
k
2
d(x ,γ)2 ≈ k

n−1
4 1T

k
− 1

2
(γ),

where T
k−

1
2

(γ) denotes a k−
1
2 tubular neighborhood about γ.

Since equator has codimension (n − 1) conclude

‖Qk‖Lp(Sn) ≈ k
n−1

4 |{x ∈ Sn : d(x , γ) ≤ k−
1
2 }|

1
p ≈ k

n−1
2

( 1
2
− 1

p
)
, p ≥ 2 (2)
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Summary Lp(Sn)-norms of eigenfunctions

Note that for the critical value of p, pc = 2(n+1)
n−1 , have

‖Zk‖
L

2(n+1)
n−1 (Sn)

≈ ‖Qk‖
L

2(n+1)
n−1 (Sn)

≈ k
n−1

2(n+1) .

For larger exponents p > pc , Zk has larger Lp-norms, while for smaller
ones p < pc , Qk wins.

Showed in my 1985 thesis on harmonic analysis on spheres that these are
the worst case, i.e., if ek spherical harmonic of degree k :

‖ek‖Lp(Sn) . kσ(p)‖ek‖L2(Sn) (3)

σ(p) =

{
n( 1

2 −
1
p )− 1

2 , p ≥
2(n+1)
n−1

n−1
2 ( 1

2 −
1
p ), 2 < p ≤ 2(n+1)

n−1

(4)

Bounds for “large” p sensitive to high concentration at points and “small”
p to high concentration along periodic geodesics
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Lp-estimates for general compact manifolds

Motivated by potential applications in harmonic analysis and PDEs,
showed that the above estimates (3)-(4) hold for all n-dimensional
compact manifolds (M, g):

‖eλ‖Lp(M) . λσ(p)‖eλ‖L2(M) (5)

Same bounds hold if f is a function whose
√
−∆g -spectrum lies in unit

interval [λ, λ+ 1].

Latter always sharp, but don’t expect (5) to typically be saturated by
eigenfunctions.

Use “global harmonic analysis” based on long-time dynamics of geodesic
flow to try to see when (5) can be improved.
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Generic improvements for large exponents (p > pc)

Given x ∈ M and an initial unit direction ξ ∈ S∗xM over x , say that ξ ∈ Lx
if geodesic with initial direction ξ loops back through x in some positive
time t.

(CS, S. Zelditch 2002) If |Lx | = 0 for all x ∈ M (a generic condition),

then ‖eλ‖L∞(M) = o(λ
n−1

2 ), and hence

‖eλ‖Lp(M) = o(λσ(p)), ∀p > pc = 2(n+1)
n−1 (6)

Much stronger results if one considers real analytic manifolds: Let
Cx ⊂ S∗xM denote the subset of initial direction of smoothly closed (i.e.,
periodic) geodesics.

(CS, S. Zelditch 2014) If n = 2 have (6) for quasimodes if and only if
there is no point x ∈ M for which Cx = S∗xM. Also a nec/suff dynamical
condition in higher dimensions.
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Ideas in proofs of o-improvements for large exponents
(p > pc)

Can use propagation of singularities for wave operators to adapt proof of
improvements in error term in Weyl law of Duistermaat-Guillemin/Ivrii (a
trace estimate) to obtain improved L∞ estimate (pointwise estimate).

Implicit in Bérard 1978: If (M, g) has nonpositive sectional curvatures

‖eλ‖L∞(M) = O(λ
n−1

2 /
√

log λ) (i.e.,log-improvement).

Hassell-Tacy 2011: Also get the same log-improvements over (6) for all
exponents p > pc under this curvature assumption.

Problem: When can you get even just o-improvements of the
eigenfunction estimates (3)-(4) for the critical exponent, pc = 2(n+1)

n−1 ?

Remember this exponent sees both concentration at points AND
concentration along periodic geodesics.
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Other ways of measuring concentration along geodesics

We’ve argued that the Lp-estimates (5) for 2 < p < pc are sensitive to
concentration along geodesics as exhibited by the higher weight spherical
harmonics, Qk . What about other estimates?

Lower bounds for L1-norms (due to CS-Zelditch 2011):

λ−
n−1

4 . ‖eλ‖L1(M). (7)

Extreme L2-concentration about λ−
1
2 tubes about unit length

geodesics γ ∈ Π:
‖eλ‖L2(T

λ
− 1

2
(γ)) ≤ 1 (8)

Both are saturated by the Qk , λ =
√
k(k + n − 1) since Qk behaves like

λ
n−1

4 times indicator function of λ−
1
2 neighborhood of equator.
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More about lower bounds for L1-norms

The lower bound (7) actually follows from Hölder’s inequality and the old
Lp upper bounds (5) for any 2 < p ≤ pc :

1 = ‖eλ‖2 ≤ ‖eλ‖θ1‖eλ‖1−θ
p , relevant θ = θ(p)

Using this and the bound ‖eλ‖p = O(λ
n−1

2
( 1

2
− 1

p
)) yields (7), i.e.,

λ−
n−1

4 . ‖eλ‖1.

Argument show that given (M, g) improved Lp-norms for 2 < p < pc yield
improved L1 lower bounds.

Can show that if lower bound (7) is saturated then there must be a λ−
1
2

geod-tube and δ > 0 and 0 < c <∞ (depending only on (M, g)) so that,
as λ ranges of a subseq of e.v.’s, (just like for the Qk) have

|{x ∈ T
λ−

1
2

(γ) : |eλ(x)| ∈ [cλ
n−1

4 , c−1λ
n−1

4 ]}| ≥ δ|T
λ−

1
2

(γ)|.
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L1-lower bounds and lower bounds for the size of nodal sets

Consider the nodal set of a given real eigenfunction,

Zλ = {x ∈ M : eλ(x) = 0}.

Known that Zλ a smooth hypersurface off set of (n − 2) Hausdorff
dimension. Let |Zλ| = Hn−1(Zλ) denote the (n− 1)-dimensional Hausdorff
measure of Zλ.

Conjecture of Yau 1970s: |Zλ| ≈ λ

Completely solved in real analytic case by Donnelly-Fefferman c. 1990.
Also, lower bound in C∞ case when n = 2 obtained by Brüning-Yau

1970s. Upper bound |Zλ| = O(λ
3
2 ) by Dong and Donnelly-Fefferman for

smooth case when n = 2.
Best known upper bounds for n ≥ 3 are doubly exponential (Hardt-Simon).

Until recently, best known lower bounds were due to Han-Lin e−cλ . |Zλ|.

Chris Sogge Concentration of eigenfunctions 12 / 23



Lower bounds for size of nodal sets, cont.

The exponential barrier for lower bounds for |Zλ| was broken
independently by Colding-Minicozzi and Sogge-Zelditch in 2011.

Current world record for general case when n ≥ 3 is due to C-M:

λ1− n−1
2 . |Zλ|. (9)

Their approach was to use “good ball” idea of Donnelly-Fefferman and
Lpc -bounds (3) to establish (9).

In other words, C-M were able to prove (9) by showing that eigenfunctions
could not be “extremely concentrated” on sets of an appropriate scale.

Chris Sogge Concentration of eigenfunctions 13 / 23



Alternate approach of CS-Zelditch

CS-Zelditch obtained a Dong-type-identity

λ2

∫
M
|eλ| dV = 2

∫
Zλ

|∇eλ| dS .

In CS-Z 2011 we also proved the L1-lower bounds (7) using the bound

‖eλ‖∞ . λ
n−1

2 ‖eλ‖1. Same argument shows

‖∇eλ‖∞ . λ1+ n−1
2 ‖eλ‖1,

whence, by above,

λ2‖eλ‖1 ≤ 2|Zλ| ‖∇eλ‖∞ . λ1+ n−1
2 ‖eλ‖1 |Zλ|,

recovering the C-M world record

λ1− n−1
2 . |Zλ|.
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Variations on this theme and L1 lower bounds, redux

Using the above Dong-identity and its proof, Hezari and CS showed that

λ
(∫

M
|eλ| dV

)2
. |Zλ|, (10)

which also leads to the Colding-Minicozzi world record (9) if you use the
L1-lower bound of CS-Zelditch:

λ−
n−1

4 . ‖eλ‖L1(M).

Of course (10) shows that any improvements of this L1-lower bound lead
to improvements of the C-M world record.

Blair-CS showed that there are improved Lp(M)-norms for 2 < p < pc and,
hence, improved L1 lower bounds (using Hölder as before) if (M, g) has
nonpositive sectional curvatures. Hence in this case, B-CS showed that

lim inf
λ→∞

λ−1+ n−1
2 |Zλ| =∞.
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L2-mass on shrinking geodesic tubes, redux

Recall that we posited that another way of measuring an extreme
concentration was in terms of L2-mass over shrinking tubes, i.e., the
”Kakeya-Nikodym” quanitites

‖eλ‖KN = sup
γ∈Π
‖eλ‖L2(T

λ
− 1

2
(γ)).

Since our e.f.’s are L2-normalized, one has the trivial bounds ‖eλ‖KN ≤ 1.
When n = 2 there is the related (but non-trivial) restriction estimate of
Burq-Gérard-Tzvetkov saying that∫

γ
|eλ|2ds . λ

1
2 . (11)

Any improvements over B-G-T lead to nontrivial KN bounds when n = 2.
This was done by CS-Zelditch under the assumption of nonpos curv.

Restriction estimates turn out to be too singular in higher dimensions to
yield improved KN-bounds. Still, under the assumption of nonpos
curvature, Blair-CS beat the trivial KN bounds.
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Kakeya-Nikodym estimates

Using 1970s classical analysis techniques of Hörmander and
Cordoba-Fefferman showed that, when n = 2, in 2011 CS showed

‖eλ‖L4(M) . λ
1
8 ‖eλ‖

3
4

L2(M)
× sup
γ∈Π
‖eλ‖

1
4

L2(T
λ
− 1

2
(γ))

, (12)

which improves the 1980s bounds ‖eλ‖4 . λ
1
8 .

A variation of this with B-G-T restriction norms in RHS (and an λε loss)
was done earlier in 2009 by Bourgain.

Immediately see that the aforementioned improved KN estimates for n = 2
lead to improved L4-bounds (and hence improved Lp, 2 < p < 6 by
interpolation).

Using (12) and another estimate from Bourgain 2009 can show that three
problems: 1) improved L4(M) estimates, 2) improved B-G-T geodesic
restriction estimates and 3) improved KN estimates are equivalent.
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Key identity: Designer eigenfunction reproducing formula

Choose ρ ∈ S(R) satisfying

ρ(0) = 1, and ρ̂(t) = 0, |t| /∈ (δ/2, δ).

Then ρ(λ−
√
−∆g )eλ = eλ, and

ρ
(
λ−

√
−∆g

)
(x , y) = λ

n−1
2 e iλdg (x ,y)aλ(x , y) + O(λ−N),

where

|Dα
x ,yaλ| ≤ Cα, and aλ(x , y) = 0 if dg (x , y) /∈ [δ/2, δ].

To prove improved results for nonpos curvature use ρ(T (λ−
√
−∆g )),

Hadamard parametrix for universal cover and

ρ(T (λ−
√
−∆g )) =

1

2πT

∫ T

−T
ρ̂(t/T ) e iλt e−it

√
−∆g dt.
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Higher-dimensional Kakeya-Nikodym estimates

Using more recent harmonic analysis techniques developed by Bourgain,
Lee, Tao-Vargas, Blair-CS were able to expend (12) to higher dimensions

‖eλ‖Lp(M) . λσ(p)‖eλ‖1−θ
L2(M)

× sup
γ∈Π
‖eλ‖θL2(T

λ
− 1

2
(γ)),

2 < p < pc , some θ = θp ∈ (0, 1),

which along with the aforementioned improved KN bounds for nonpos
curv leads to improved Lp bounds, and hence improved L1-lower bounds
and improved lower bounds for size of nodal sets, as described before.

Chris Sogge Concentration of eigenfunctions 19 / 23



Refined Kakeya-Nikodym estimates in 2-dimensions

Recently, Blair-CS proved the somewhat better KN-estimates

‖eλ‖L4(M) .ε λ
1
8 ‖eλ‖

1
2

L2(M)
× sup
γ∈Π
‖eλ‖

1
2

L2(T
λ
− 1

2 +ε
(γ))

, (13)

Better than its cousin (12) since, instead of powers ( 3
4 ,

1
4 ), have powers

( 1
2 ,

1
2 ). There is an apparent ε-loss, though.

Not so concerned with this “loss” since, if one could prove natural QE
estimates (assuming negative curv...)

sup
γ∈Π

∫
T
λ
− 1

2 +ε
(γ))
|eλ|2dV . |T

λ−
1
2 +ε(γ)| ≈ λ−

1
2

+ε, (14)

would get natural analog of Zygmund’s L4(T2) bounds, saying, that, here,

‖eλ‖L4(M) .ε λ
ε, ∀ε > 0.

Of course above shrinking scale QE estimates seem very difficult.
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Recent small-scale quantum ergodic estimates

Although estimates like (14) involving QE estimates on λ-power scales
seem very difficult, in 2014, X. Han and H. Hezari and G. Rivière were able
to prove related bounds on logarithmic scales:

Theorem (X. Han and H. Hezari and G. Rivière)

Let (M, g) be negatively curved. Then if {eλj} is an orthonormal basis of
eigenfunctions, there is a density one subsequence of eigenvalues, {λjk},
and αn, c > 0 so that

crn ≤
∫
Br (x)

|eλjk |
2 dV ≤ c−1rn, ∀x ∈ M, if r = (log λ)−αn . (15)

H. Hezari and G. Riviére used (15) and localized eigenfunction bounds to
show that this subsequence satisfies the improved critical Lpc -bounds

‖eλjk ‖Lpc = O(λ
1
pc
jk
/(log λjk )1/σn), pc = 2(n+1)

n−1 .
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Improved ball-localized eigenfunction estimates

Can improved the ball-localized estimates of Hezari and Riviére. Just by
using original 1988 spectral projection bounds, get:

Theorem

If ‖eλ‖2 = 1, then there is a constant C = C (M, g) so that for all r > 0
smaller than the injectivity radius,

‖eλ‖
L

2(n+1)
n−1 (M)

≤ Cλ
n−1

2(n+1)
(
r−

n+1
4 sup

x∈M
‖eλ‖L2(Br (x))

) 2
n+1 . (16)

Corollary

If the geodesic flow on (M, g) is ergodic, then there is a density one
sequence of eigenvalues, {λjk}, so that

‖eλjk ‖L
2(n+1)
n−1 (M)

= o
(
λ

n−1
2(n+1)

jk

)
.
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Open problems: nontrivial L2(Br) estimates

Easy to see that for 0 < r � 1, have uniform bounds

‖eλ‖L2(Br (x)) ≤ Cr
1
2 . (17)

This estimate is saturated by zonal functions for all r (and by highest

weight spherical harmonics if 0 < r � λ−
1
2 ).

Question: When can you beat the trivial bound (17)?

Seems difficult. Techniques used to prove non-trivial L2 bounds over small
tubes for nonpositive curvature don’t seem to apply.

Using Bérard’s log-improved sup-norm estimates for nonpos curvature, can
show that get log-improvements for (16) when r = λ−1, and then use this
fact and L∞ variation of localized Lp-bounds to recover his sup-norm
estimates. But latter argument is circular.

Can also recover ‖Qk‖Lp(Sn) by using (16) and knowledge of ‖Qk‖L2(Br (x)).
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