Problems related to the concentration of eigenfunctions
Chris Sogge (Johns Hopkins University)

Survey of joint work with Matthew Blair,
Hamid Hezari, Steve Zelditch...
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Setting and general problem
Compact boundaryless manifold (M, g) of dimension n > 2.

Eigenfunctions:

~Aei(x) = \2e(x). / P dv =1

Give fundamental modes of vibration: uj(t, x) = cos tA; ej(x).
Vague Question: How can you detect and measure various types of

concentration of eigenfunctions (or, more generally, quasi-modes)?

As uj(t, x) provide high-frequency solutions of wave equations,
(02 — A)u; = 0, expect answer to depend on long-term dynamics of
geodesic flow (e.g., propagation of singularities for 92 — A)

“Global harmonic analysis” or Harmonic/Globlal analysis
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Extreme behavior on round spheres, S”

Consider the standard sphere
S"={xeR™ X +x3+ - +x2, =1}
Eigenvalues of \/—Agn are
Vk(k+n—1)~k,
repeating with highest possible multiplicity
dp ~ k"1
(very non-generic).

Eigenfunctions are spherical harmonics, restrictions of homogeneous
harmonic polynomials in R™! to S”.
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Extreme concentration at points

[2-normalized zonal functions Z(x), by classical Darboux-Szegé formula:

n—1

Z(x) ~ cos((k + 251)d(x, £1) + ) /((d(x, £1)) 7, if d(x, £1) > k!

n—1

and |Zx(x)| = O(k 2 ) if d(x,£1) < k=1, where

1=(1,0,...,0)

denotes north pole and d(x, y) distance on S” and 0, = —(n— 1)1 /4
(Maslov factor).

High concentration at poles +1.

Easy calculation using above:

1 1 1
~ Lh(5—=)—5 2(n+1
1 Zullo(sny = k"27R) 72, p > 2ntD) (1)
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Extreme concentration along periodic geodesics
Highest weight spherical harmonics,
Qr(x) ~ k%(xl + ixp)k
have extreme concentration near equator (periodic geodesic)
y={xeS":0=x"=(x3,..., Xnt1)}-
Simplest example of “Gaussian beams”,

n—1

|Qux)| = k"7 e 2 »

n—1
%

b7 ()
k2

where 7;_%(7) denotes a k~2 tubular neighborhood about ~.
Since equator has codimension (n — 1) conclude

n—1 1
1 Qkllie(smy ~ k™% [{x € S : d(x,7) < k™ 2}|» ~ k2
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Summary LP(S")-norms of eigenfunctions

Note that for the critical value of p, p. = (n"+11), have

12kl 2weny  ~ | Qill 20iny A k20D
L =T (S L™n=T (Sn)

For larger exponents p > p., Zx has larger LP-norms, while for smaller
ones p < pc, Qi wins.

Showed in my 1985 thesis on harmonic analysis on spheres that these are
the worst case, i.e., if e, spherical harmonic of degree k:

lexlliogsny < k7P lexl 2(sm) (3)
n(3-1)-3 p> A
o) = {12 b @
{21(5 ~1), 2<p< il

Bounds for “large” p sensitive to high concentration at points and ‘“small”
p to high concentration along periodic geodesics
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LP-estimates for general compact manifolds

Motivated by potential applications in harmonic analysis and PDEs,
showed that the above estimates (3)-(4) hold for all n-dimensional
compact manifolds (M, g):

lexlloemy S A7) el i2qmy (5)

Same bounds hold if f is a function whose |/—A,-spectrum lies in unit
interval [\, A +1].

Latter always sharp, but don't expect (5) to typically be saturated by
eigenfunctions.

Use “global harmonic analysis” based on long-time dynamics of geodesic
flow to try to see when (5) can be improved.
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Generic improvements for large exponents (p > p.)

Given x € M and an initial unit direction £ € S; M over x, say that £ € Ly
if geodesic with initial direction & loops back through x in some positive
time t.

(CS, S. Zelditch 2002) If [£| = 0 for all x € M (a generic condition),

n—1
then ||| oo(m) = o(A 2

), and hence

lexllomy = o(A7P)),  ¥p > p = ArtD) (6)

Much stronger results if one considers real analytic manifolds: Let
Cx C S;M denote the subset of initial direction of smoothly closed (i.e.,
periodic) geodesics.

(CS, S. Zelditch 2014) If n = 2 have (6) for quasimodes if and only if
there is no point x € M for which Cx = SiM. Also a nec/suff dynamical
condition in higher dimensions.
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|deas in proofs of o-improvements for large exponents
(P> pc)

Can use propagation of singularities for wave operators to adapt proof of
improvements in error term in Weyl law of Duistermaat-Guillemin/Ivrii (a
trace estimate) to obtain improved L estimate (pointwise estimate).

Implicit in Bérard 1978: If (M, g) has nonpositive sectional curvatures
llexllLoe(my = O()\n%l/\/log A) (i.e.,log-improvement).

Hassell-Tacy 2011: Also get the same log-improvements over (6) for all
exponents p > p. under this curvature assumption.

Problem: When can you get even just o-improvements of the

eigenfunction estimates (3)-(4) for the critical exponent, p. = 2(”"j11)?

Remember this exponent sees both concentration at points AND
concentration along periodic geodesics.
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Other ways of measuring concentration along geodesics

We've argued that the LP-estimates (5) for 2 < p < p. are sensitive to

concentration along geodesics as exhibited by the higher weight spherical
harmonics, Q,. What about other estimates?

o Lower bounds for L!-norms (due to CS-Zelditch 2011):

n—

1
= S llellmy- (7)

-

. _1 .
e Extreme L?-concentration about A™2 tubes about unit length
geodesics v € II:

HeAHLZ(Tf%(V)) <1 (8)

Both are saturated by the Qx, A = \/k(k + n — 1) since Qx behaves like
A"T times indicator function of A2 neighborhood of equator.
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More about lower bounds for Ll-norms

The lower bound (7) actually follows from Holder's inequality and the old
LP upper bounds (5) for any 2 < p < pg:

1=|lexll2 < [lex]lfllex]ln?, relevant 6 = 6(p)

n—

Using this and the bound |ley][, = O(A"Z 375)) yields (7), i.e.,

n—

A\ 4

1
S llealfa-

Argument show that given (M, g) improved LP-norms for 2 < p < p. yield
improved L! lower bounds.

Can show that if lower bound (7) is saturated then there must be a A2
geod-tube and 6 > 0 and 0 < ¢ < oo (depending only on (M, g)) so that,
as \ ranges of a subseq of e.v.’s, (just like for the Q) have

{xeT 1) el € AT AT 2 01T, 4 ()]

1
2
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[1-lower bounds and lower bounds for the size of nodal sets

Consider the nodal set of a given real eigenfunction,
Zy={x€ M: e\(x) =0}.

Known that Z, a smooth hypersurface off set of (n — 2) Hausdorff

dimension. Let |Z,| = H"1(Z)) denote the (n — 1)-dimensional Hausdorff
measure of 7).

Conjecture of Yau 1970s: |Z,| ~ A

Completely solved in real analytic case by Donnelly-Fefferman c. 1990.
Also, lower bound in C*° case when n = 2 obtained by Briining-Yau

1970s. Upper bound |Z)| = O()\%) by Dong and Donnelly-Fefferman for
smooth case when n = 2.

Best known upper bounds for n > 3 are doubly exponential (Hardt-Simon).

Until recently, best known lower bounds were due to Han-Lin e=<* < |Z,].
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Lower bounds for size of nodal sets, cont.

The exponential barrier for lower bounds for |Zy| was broken
independently by Colding-Minicozzi and Sogge-Zelditch in 2011.

Current world record for general case when n > 3 is due to C-M:

AT <z (9)

Their approach was to use “good ball” idea of Donnelly-Fefferman and
LP<-bounds (3) to establish (9).

In other words, C-M were able to prove (9) by showing that eigenfunctions
could not be “extremely concentrated” on sets of an appropriate scale.
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Alternate approach of CS-Zelditch
CS-Zelditch obtained a Dong-type-identity

AZ/ |e,\|dV:2/ Vey| dS.
M Z,

In CS-Z 2011 we also proved the L!-lower bounds (7) using the bound
llexlloo S )\HT_lﬂe)\Hl. Same argument shows

IVerlloo S A2 len]ln,
whence, by above,
n—1
Nllelr < 2|12y [Verllso S A2 Jleall1 23],

recovering the C-M world record

N7 <2,
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Variations on this theme and L! lower bounds, redux

Using the above Dong-identity and its proof, Hezari and CS showed that

A [ lelav) 5121 (10)

which also leads to the Colding-Minicozzi world record (9) if you use the
L-lower bound of CS-Zelditch:

n—

A2

1
S llexllemy-

Of course (10) shows that any improvements of this L-lower bound lead
to improvements of the C-M world record.

Blair-CS showed that there are improved LP(M)-norms for 2 < p < p. and,
hence, improved L' lower bounds (using Holder as before) if (M, g) has
nonpositive sectional curvatures. Hence in this case, B-CS showed that

. _14n=1
I|/\m|nf)\ 57 2)| = .
— 00
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[?-mass on shrinking geodesic tubes, redux

Recall that we posited that another way of measuring an extreme
concentration was in terms of L2-mass over shrinking tubes, i.e., the
" Kakeya-Nikodym" quanitites

lexllkn = sup [lexll2¢r
yell A2

()

Since our e.f.'s are L?-normalized, one has the trivial bounds ||ey||xy < 1.
When n = 2 there is the related (but non-trivial) restriction estimate of
Burg-Gérard-Tzvetkov saying that

/ lex|2ds < AL (1)
A

Any improvements over B-G-T lead to nontrivial KN bounds when n = 2.
This was done by CS-Zelditch under the assumption of nonpos curv.

Restriction estimates turn out to be too singular in higher dimensions to
yield improved KN-bounds. Still, under the assumption of nonpos
curvature, Blair-CS beat the trivial KN bounds.
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Kakeya-Nikodym estimates

Using 1970s classical analysis techniques of Hormander and
Cordoba-Fefferman showed that, when n =2, in 2011 CS showed

)’ (12)

1 3 1
leallisguy S Abllenll iz  sup llexl by
el A

Nl

which improves the 1980s bounds ||ex|ls < AS.

A variation of this with B-G-T restriction norms in RHS (and an A® loss)
was done earlier in 2009 by Bourgain.

Immediately see that the aforementioned improved KN estimates for n = 2
lead to improved L*-bounds (and hence improved LP, 2 < p < 6 by
interpolation).

Using (12) and another estimate from Bourgain 2009 can show that three
problems: 1) improved L*(M) estimates, 2) improved B-G-T geodesic
restriction estimates and 3) improved KN estimates are equivalent.
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Key identity: Designer eigenfunction reproducing formula

Choose p € S(R) satisfying
p(0) =1, and p(t) =0, [t| ¢ (6/2,0).
Then p(A — /—Ag)ey = ey, and

PN~ V/—Bg)(xy) = A7 €PN ay (x,y) + O(AN),

where
’Dg,ya)\| < Gy, and a,\(x,y) =0 if dg(va) ¢ [6/276]

To prove improved results for nonpos curvature use p(T (A — /—Ag)),
Hadamard parametrix for universal cover and

)
VB = g [ ATy eV
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Higher-dimensional Kakeya-Nikodym estimates

Using more recent harmonic analysis techniques developed by Bourgain,
Lee, Tao-Vargas, Blair-CS were able to expend (12) to higher dimensions

o 0
lexllioqy S A7 Pllexll 2y * sup llellfzir | )
yell AT 2

2<p<pe, some 6 =0,¢c(0,1),

which along with the aforementioned improved KN bounds for nonpos
curv leads to improved LP bounds, and hence improved L!-lower bounds
and improved lower bounds for size of nodal sets, as described before.
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Refined Kakeya-Nikodym estimates in 2-dimensions

Recently, Blair-CS proved the somewhat better KN-estimates
1 1 1

exlliaomny Se Agllen]|? x sup ||ex]|? , 13

lexllson S Ml iy % swplealir oy (19

Better than its cousin (12) since, instead of powers (2, 1), have powers
(2, 2) There is an apparent e-loss, though.

Not so concerned with this “loss” since, if one could prove natural QE
estimates (assuming negative curv...)

sup/ eaPdV S 1T,y () = A2, (14)
V€T () g

would get natural analog of Zygmund's L*(T?) bounds, saying, that, here,

lexllsmy Se A%, Ve >0,

Of course above shrinking scale QE estimates seem very difficult.
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Recent small-scale quantum ergodic estimates

Although estimates like (14) involving QE estimates on A-power scales
seem very difficult, in 2014, X. Han and H. Hezari and G. Riviére were able
to prove related bounds on logarithmic scales:

Theorem (X. Han and H. Hezari and G. Riviere)

Let (M, g) be negatively curved. Then if {ey } is an orthonormal basis of
eigenfunctions, there is a density one subsequence of eigenvalues, {)\;, },
and ap, ¢ > 0 so that

a”<u/ lex, [FdV < ¢l VxeM, if r=(logA)"*.  (15)
Br(x)

v

H. Hezari and G. Riviére used (15) and localized eigenfunction bounds to
show that this subsequence satisfies the improved critical LP<-bounds

1
Pc on _2(n+1
lex,, lse = O(A /(log Aj,)/"), pe = 244D,

n—1
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Improved ball-localized eigenfunction estimates

Can improved the ball-localized estimates of Hezari and Riviére. Just by
using original 1988 spectral projection bounds, get:

Theorem

If ||ex||2 = 1, then there is a constant C = C(M, g) so that for all r > 0
smaller than the injectivity radius,

n—1 "
llexll 2 < CA\2(n+0) (r—%l
LT (

2
L 16
w sup lexll 2B, (x))) (16)

Corollary

If the geodesic flow on (M, g) is ergodic, then there is a density one
sequence of eigenvalues, {\; }, so that

n—1

A\ D
||e)\jk ||L2(nnj11) o = O()\- )

Jk
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Open problems: nontrivial L?(B,) estimates

Easy to see that for 0 < r <« 1, have uniform bounds

1
lexlli2(s, (x)) < Cr2. (17)
This estimate is saturated by zonal functions for all r (and by highest
weight spherical harmonics if 0 < r < )\*%).
Question: When can you beat the trivial bound (17)?

Seems difficult. Techniques used to prove non-trivial L2 bounds over small
tubes for nonpositive curvature don’t seem to apply.

Using Bérard's log-improved sup-norm estimates for nonpos curvature, can
show that get log-improvements for (16) when r = A\~1, and then use this
fact and L*° variation of localized LP-bounds to recover his sup-norm
estimates. But latter argument is circular.

Can also recover || Q|| p(sny by using (16) and knowledge of || Q«/[2(5,(x))-
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