Problems related to the concentration of eigenfunctions

Chris Sogge (Johns Hopkins University)

Survey of joint work with Matthew Blair, Hamid Hezari, Steve Zelditch...

Setting and general problem

Compact boundaryless manifold (M, g) of dimension $n \ge 2$. *Eigenfunctions:*

$$-\Delta e_j(x) = \lambda_j^2 e_j(x), \qquad \int |e_j|^2 dV = 1$$

Give fundamental modes of vibration: $u_j(t,x) = \cos t \lambda_j e_j(x)$.

Vague Question: How can you detect and measure various types of concentration of eigenfunctions (or, more generally, quasi-modes)?

As $u_j(t,x)$ provide high-frequency solutions of wave equations, $(\partial_t^2 - \Delta)u_j = 0$, expect answer to depend on long-term dynamics of geodesic flow (e.g., propagation of singularities for $\partial_t^2 - \Delta$)

"Global harmonic analysis" or Harmonic/Globlal analysis

Extreme behavior on round spheres, S^n

Consider the standard sphere

$$S^n = \{x \in \mathbb{R}^{n+1} : x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\}$$

Eigenvalues of $\sqrt{-\Delta_{S^n}}$ are

$$\sqrt{k(k+n-1)}\approx k,$$

repeating with highest possible multiplicity

$$d_k pprox k^{n-1}$$

(very non-generic).

Eigenfunctions are *spherical harmonics*, restrictions of homogeneous harmonic polynomials in \mathbb{R}^{n+1} to S^n .

Extreme concentration at points

 L^2 -normalized zonal functions $Z_k(x)$, by classical Darboux-Szegö formula:

 $Z_k(x) \approx \cos\left((k + \frac{n-1}{2})d(x, \pm 1) + \sigma_n\right) / \left((d(x, \pm 1))^{\frac{n-1}{2}}, \text{ if } d(x, \pm 1) \ge k^{-1}$

and $|Z_k(x)| = O(k^{\frac{n-1}{2}})$ if $d(x, \pm 1) \le k^{-1}$, where

$$1 = (1, 0, \ldots, 0)$$

denotes north pole and d(x, y) distance on S^n and $\sigma_n = -(n-1)\pi/4$ (Maslov factor).

High concentration at poles ± 1 .

Easy calculation using above:

$$\|Z_k\|_{L^p(S^n)} \approx k^{n(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}}, \quad p \ge \frac{2(n+1)}{n-1}.$$
 (1)

Extreme concentration along periodic geodesics

Highest weight spherical harmonics,

 $Q_k(x) \approx k^{\frac{n-1}{4}} (x_1 + i x_2)^k$

have extreme concentration near equator (periodic geodesic)

$$\gamma = \{x \in S^n : 0 = x' = (x_3, \dots, x_{n+1})\}.$$

Simplest example of "Gaussian beams",

$$|Q_k(x)| \approx k^{\frac{n-1}{4}} e^{-\frac{k}{2}d(x,\gamma)^2} \approx k^{\frac{n-1}{4}} \mathbb{1}_{\mathcal{T}_{k^{-\frac{1}{2}}}(\gamma)},$$

where $\mathcal{T}_{k^{-\frac{1}{2}}}(\gamma)$ denotes a $k^{-\frac{1}{2}}$ tubular neighborhood about γ . Since equator has codimension (n-1) conclude

$$\|Q_k\|_{L^p(S^n)} \approx k^{\frac{n-1}{4}} |\{x \in S^n : d(x, \gamma) \le k^{-\frac{1}{2}}\}|^{\frac{1}{p}} \approx k^{\frac{n-1}{2}(\frac{1}{2} - \frac{1}{p})}, \ p \ge 2$$
(2)

Summary $L^{p}(S^{n})$ -norms of eigenfunctions

Note that for the critical value of p, $p_c = \frac{2(n+1)}{n-1}$, have

$$\|Z_k\|_{L^{\frac{2(n+1)}{n-1}}(S^n)} \approx \|Q_k\|_{L^{\frac{2(n+1)}{n-1}}(S^n)} \approx k^{\frac{n-1}{2(n+1)}}.$$

For larger exponents $p > p_c$, Z_k has larger L^p -norms, while for smaller ones $p < p_c$, Q_k wins.

Showed in my 1985 thesis on harmonic analysis on spheres that these are the worst case, i.e., if e_k spherical harmonic of degree k:

$$\|e_k\|_{L^p(S^n)} \lesssim k^{\sigma(p)} \|e_k\|_{L^2(S^n)}$$
(3)

$$\sigma(p) = \begin{cases} n(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}, \ p \ge \frac{2(n+1)}{n-1} \\ \frac{n-1}{2}(\frac{1}{2} - \frac{1}{p}), \ 2 (4)$$

Bounds for *"large"* p sensitive to *high concentration at points* and *"small"* p to *high concentration along periodic geodesics*

Chris Sogge

L^p-estimates for general compact manifolds

Motivated by potential applications in harmonic analysis and PDEs, showed that the above estimates (3)-(4) hold for all *n*-dimensional compact manifolds (M, g):

$$\|e_{\lambda}\|_{L^{p}(M)} \lesssim \lambda^{\sigma(p)} \|e_{\lambda}\|_{L^{2}(M)}$$
(5)

Same bounds hold if f is a function whose $\sqrt{-\Delta_g}$ -spectrum lies in unit interval $[\lambda, \lambda + 1]$.

Latter always sharp, but don't expect (5) to typically be saturated by eigenfunctions.

Use "global harmonic analysis" based on long-time dynamics of geodesic flow to try to see when (5) can be improved.

Generic improvements for large exponents $(p > p_c)$

Given $x \in M$ and an initial unit direction $\xi \in S_x^*M$ over x, say that $\xi \in \mathcal{L}_x$ if geodesic with initial direction ξ loops back through x in some positive time t.

(CS, S. Zelditch 2002) If $|\mathcal{L}_{x}| = 0$ for all $x \in M$ (a generic condition), then $||e_{\lambda}||_{L^{\infty}(M)} = o(\lambda^{\frac{n-1}{2}})$, and hence

$$\|e_{\lambda}\|_{L^{p}(M)} = o(\lambda^{\sigma(p)}), \quad \forall p > p_{c} = \frac{2(n+1)}{n-1}$$
 (6)

Much stronger results if one considers *real analytic* manifolds: Let $C_x \subset S_x^*M$ denote the subset of initial direction of smoothly closed (i.e., periodic) geodesics.

(CS, S. Zelditch 2014) If n = 2 have (6) for quasimodes if and only if there is no point $x \in M$ for which $C_x = S_x^*M$. Also a nec/suff dynamical condition in higher dimensions.

Ideas in proofs of *o*-improvements for large exponents $(p > p_c)$

Can use propagation of singularities for wave operators to adapt proof of improvements in error term in Weyl law of Duistermaat-Guillemin/Ivrii (a trace estimate) to obtain improved L^{∞} estimate (pointwise estimate).

Implicit in Bérard 1978: If (M, g) has nonpositive sectional curvatures $\|e_{\lambda}\|_{L^{\infty}(M)} = O(\lambda^{\frac{n-1}{2}}/\sqrt{\log \lambda})$ (i.e.,log-improvement).

Hassell-Tacy 2011: Also get the same log-improvements over (6) for all exponents $p > p_c$ under this curvature assumption.

Problem: When can you get even just *o*-improvements of the eigenfunction estimates (3)-(4) for the critical exponent, $p_c = \frac{2(n+1)}{n-1}$?

Remember this exponent sees both concentration at points **AND** concentration along periodic geodesics.

Other ways of measuring concentration along geodesics

We've argued that the L^p -estimates (5) for $2 are sensitive to concentration along geodesics as exhibited by the higher weight spherical harmonics, <math>Q_k$. What about other estimates?

• Lower bounds for *L*¹-norms (due to CS-Zelditch 2011):

$$\lambda^{-\frac{n-1}{4}} \lesssim \|e_{\lambda}\|_{L^{1}(\mathcal{M})}.$$
(7)

• Extreme L²-concentration about $\lambda^{-\frac{1}{2}}$ tubes about unit length geodesics $\gamma \in \Pi$:

$$\|e_{\lambda}\|_{L^{2}(\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma))} \leq 1 \tag{8}$$

Both are saturated by the Q_k , $\lambda = \sqrt{k(k+n-1)}$ since Q_k behaves like $\lambda^{\frac{n-1}{4}}$ times indicator function of $\lambda^{-\frac{1}{2}}$ neighborhood of equator.

More about lower bounds for L^1 -norms

The lower bound (7) actually follows from Hölder's inequality and the old L^p upper bounds (5) for any 2 :

$$\mathbb{L} = \|e_\lambda\|_2 \leq \|e_\lambda\|_1^{ heta} \|e_\lambda\|_p^{1- heta}, ext{ relevant } heta = heta(p)$$

Using this and the bound $||e_{\lambda}||_{p} = O(\lambda^{\frac{n-1}{2}(\frac{1}{2}-\frac{1}{p})})$ yields (7), i.e.,

$$\lambda^{-\frac{n-1}{4}} \lesssim \|e_{\lambda}\|_{1}.$$

Argument show that given (M, g) improved L^p -norms for $2 yield improved <math>L^1$ lower bounds.

Can show that if lower bound (7) is saturated then there must be a $\lambda^{-\frac{1}{2}}$ geod-tube and $\delta > 0$ and $0 < c < \infty$ (depending only on (M, g)) so that, as λ ranges of a subseq of e.v.'s, (just like for the Q_k) have

$$|\{x\in\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma):\ |e_{\lambda}(x)|\in[c\lambda^{\frac{n-1}{4}},c^{-1}\lambda^{\frac{n-1}{4}}]\}|\geq\delta|\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma)|.$$

L^1 -lower bounds and lower bounds for the size of nodal sets

Consider the nodal set of a given real eigenfunction,

 $Z_{\lambda} = \{ x \in M : e_{\lambda}(x) = 0 \}.$

Known that Z_{λ} a smooth hypersurface off set of (n-2) Hausdorff dimension. Let $|Z_{\lambda}| = \mathcal{H}^{n-1}(Z_{\lambda})$ denote the (n-1)-dimensional Hausdorff measure of Z_{λ} .

Conjecture of Yau 1970s: $|Z_{\lambda}| \approx \lambda$

Completely solved in real analytic case by Donnelly-Fefferman c. 1990. Also, lower bound in C^{∞} case when n = 2 obtained by Brüning-Yau 1970s. Upper bound $|Z_{\lambda}| = O(\lambda^{\frac{3}{2}})$ by Dong and Donnelly-Fefferman for smooth case when n = 2.

Best known upper bounds for $n \ge 3$ are doubly exponential (Hardt-Simon).

Until recently, best known lower bounds were due to Han-Lin $e^{-c\lambda} \leq |Z_{\lambda}|$.

Lower bounds for size of nodal sets, cont.

The exponential barrier for lower bounds for $|Z_{\lambda}|$ was broken independently by Colding-Minicozzi and Sogge-Zelditch in 2011.

Current world record for general case when $n \ge 3$ is due to C-M:

$$\lambda^{1-\frac{n-1}{2}} \lesssim |Z_{\lambda}|. \tag{9}$$

Their approach was to use "good ball" idea of Donnelly-Fefferman and L^{p_c} -bounds (3) to establish (9).

In other words, C-M were able to prove (9) by showing that eigenfunctions could not be "extremely concentrated" on sets of an appropriate scale.

Alternate approach of CS-Zelditch

CS-Zelditch obtained a Dong-type-identity

$$\lambda^2 \int_M |e_\lambda| \, dV = 2 \int_{Z_\lambda} |\nabla e_\lambda| \, dS.$$

In CS-Z 2011 we also proved the L^1 -lower bounds (7) using the bound $\|e_{\lambda}\|_{\infty} \lesssim \lambda^{\frac{n-1}{2}} \|e_{\lambda}\|_{1}$. Same argument shows

$$\|\nabla e_{\lambda}\|_{\infty} \lesssim \lambda^{1+\frac{n-1}{2}} \|e_{\lambda}\|_{1},$$

whence, by above,

$$\lambda^2 \| \boldsymbol{e}_{\lambda} \|_1 \leq 2 |Z_{\lambda}| \| \nabla \boldsymbol{e}_{\lambda} \|_{\infty} \lesssim \lambda^{1 + \frac{n-1}{2}} \| \boldsymbol{e}_{\lambda} \|_1 |Z_{\lambda}|,$$

recovering the C-M world record

$$\lambda^{1-\frac{n-1}{2}} \lesssim |Z_{\lambda}|.$$

Variations on this theme and L^1 lower bounds, redux

Using the above Dong-identity and its proof, Hezari and CS showed that

$$\lambda \left(\int_{M} |e_{\lambda}| \, dV \right)^2 \lesssim |Z_{\lambda}|, \tag{10}$$

which also leads to the Colding-Minicozzi world record (9) if you use the L^1 -lower bound of CS-Zelditch:

$$\lambda^{-\frac{n-1}{4}} \lesssim \|e_{\lambda}\|_{L^1(M)}.$$

Of course (10) shows that any improvements of this L^1 -lower bound lead to improvements of the C-M world record.

Blair-CS showed that there are improved $L^p(M)$ -norms for $2 and, hence, improved <math>L^1$ lower bounds (using Hölder as before) if (M, g) has nonpositive sectional curvatures. Hence in this case, B-CS showed that

$$\liminf_{\lambda\to\infty}\lambda^{-1+\frac{n-1}{2}}|Z_{\lambda}|=\infty.$$

L^2 -mass on shrinking geodesic tubes, redux

Recall that we posited that another way of measuring an extreme concentration was in terms of L^2 -mass over shrinking tubes, i.e., the "Kakeya-Nikodym" quanitites

$$\|e_{\lambda}\|_{KN} = \sup_{\gamma \in \Pi} \|e_{\lambda}\|_{L^{2}(\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma))}.$$

Since our e.f.'s are L^2 -normalized, one has the trivial bounds $||e_{\lambda}||_{KN} \leq 1$. When n = 2 there is the related (but non-trivial) restriction estimate of Burq-Gérard-Tzvetkov saying that

$$\int_{\gamma} |e_{\lambda}|^2 ds \lesssim \lambda^{\frac{1}{2}}.$$
(11)

Any improvements over B-G-T lead to nontrivial KN bounds when n = 2. This was done by CS-Zelditch under the assumption of nonpos curv.

Restriction estimates turn out to be too singular in higher dimensions to yield improved KN-bounds. Still, under the assumption of nonpos curvature, Blair-CS beat the trivial KN bounds.

Chris Sogge

Kakeya-Nikodym estimates

Using 1970s classical analysis techniques of Hörmander and Cordoba-Fefferman showed that, when n = 2, in 2011 CS showed

$$\|e_{\lambda}\|_{L^{4}(M)} \lesssim \lambda^{\frac{1}{8}} \|e_{\lambda}\|_{L^{2}(M)}^{\frac{3}{4}} \times \sup_{\gamma \in \Pi} \|e_{\lambda}\|_{L^{2}(\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma))}^{\frac{1}{4}},$$
(12)

which improves the 1980s bounds $\|e_{\lambda}\|_{4} \lesssim \lambda^{rac{1}{8}}$.

A variation of this with B-G-T restriction norms in RHS (and an λ^{ε} loss) was done earlier in 2009 by Bourgain.

Immediately see that the aforementioned improved KN estimates for n = 2 lead to improved L^4 -bounds (and hence improved L^p , 2 by interpolation).

Using (12) and another estimate from Bourgain 2009 can show that three problems: 1) improved $L^4(M)$ estimates, 2) improved B-G-T geodesic restriction estimates and 3) improved KN estimates are equivalent.

Key identity: Designer eigenfunction reproducing formula Choose $\rho \in S(\mathbb{R})$ satisfying

$$\rho(0) = 1, \text{ and } \hat{\rho}(t) = 0, \ |t| \notin (\delta/2, \delta).$$

Then $\rho(\lambda - \sqrt{-\Delta_g})e_{\lambda} = e_{\lambda}$, and

$$\rho(\lambda - \sqrt{-\Delta_g})(x, y) = \lambda^{\frac{n-1}{2}} e^{i\lambda d_g(x, y)} a_\lambda(x, y) + O(\lambda^{-N}),$$

where

$$|D^{lpha}_{x,y}a_{\lambda}| \leq C_{lpha}, \quad ext{and} \ a_{\lambda}(x,y) = 0 \ ext{if} \ d_g(x,y) \notin [\delta/2,\delta].$$

To prove improved results for nonpos curvature use $\rho(T(\lambda - \sqrt{-\Delta_g}))$, Hadamard parametrix for universal cover and

$$\rho(T(\lambda - \sqrt{-\Delta_g})) = \frac{1}{2\pi T} \int_{-T}^{T} \hat{\rho}(t/T) e^{i\lambda t} e^{-it\sqrt{-\Delta_g}} dt.$$

Higher-dimensional Kakeya-Nikodym estimates

Using more recent harmonic analysis techniques developed by Bourgain, Lee, Tao-Vargas, Blair-CS were able to expend (12) to higher dimensions

$$\begin{split} \|e_{\lambda}\|_{L^{p}(M)} \lesssim \lambda^{\sigma(p)} \|e_{\lambda}\|_{L^{2}(M)}^{1-\theta} \times \sup_{\gamma \in \Pi} \|e_{\lambda}\|_{L^{2}(\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma))}^{\theta}, \\ 2$$

which along with the aforementioned improved KN bounds for nonpos curv leads to improved L^p bounds, and hence improved L^1 -lower bounds and improved lower bounds for size of nodal sets, as described before.

Refined Kakeya-Nikodym estimates in 2-dimensions

Recently, Blair-CS proved the somewhat better KN-estimates

$$\|e_{\lambda}\|_{L^{4}(M)} \lesssim_{\varepsilon} \lambda^{\frac{1}{8}} \|e_{\lambda}\|_{L^{2}(M)}^{\frac{1}{2}} \times \sup_{\gamma \in \Pi} \|e_{\lambda}\|_{L^{2}(\mathcal{T}_{\lambda^{-\frac{1}{2}+\varepsilon}}(\gamma))}^{\frac{1}{2}},$$
(13)

Better than its cousin (12) since, instead of powers $(\frac{3}{4}, \frac{1}{4})$, have powers $(\frac{1}{2}, \frac{1}{2})$. There is an apparent ε -loss, though. Not so concerned with this "loss" since, if one could prove natural QE estimates (assuming negative curv...)

$$\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-\frac{1}{2}+\varepsilon}}(\gamma))} |e_{\lambda}|^2 dV \lesssim |\mathcal{T}_{\lambda^{-\frac{1}{2}+\varepsilon}}(\gamma)| \approx \lambda^{-\frac{1}{2}+\varepsilon}, \quad (14)$$

would get natural analog of Zygmund's $L^4(\mathbb{T}^2)$ bounds, saying, that, here,

$$\|e_{\lambda}\|_{L^{4}(M)}\lesssim_{\varepsilon}\lambda^{\varepsilon},\quad\forall \varepsilon>0.$$

Of course above shrinking scale QE estimates seem very difficult.

Recent small-scale quantum ergodic estimates

Although estimates like (14) involving QE estimates on λ -power scales seem very difficult, in 2014, X. Han and H. Hezari and G. Rivière were able to prove related bounds on logarithmic scales:

Theorem (X. Han and H. Hezari and G. Rivière)

Let (M, g) be negatively curved. Then if $\{e_{\lambda_j}\}$ is an orthonormal basis of eigenfunctions, there is a density one subsequence of eigenvalues, $\{\lambda_{j_k}\}$, and $\alpha_n, c > 0$ so that

$$cr^n \leq \int_{B_r(x)} |e_{\lambda_{j_k}}|^2 dV \leq c^{-1}r^n, \quad \forall x \in M, \text{ if } r = (\log \lambda)^{-\alpha_n}.$$
 (15)

H. Hezari and G. Riviére used (15) and localized eigenfunction bounds to show that this subsequence satisfies the improved critical L^{p_c} -bounds

$$\|e_{\lambda_{j_k}}\|_{L^{p_c}} = O(\lambda_{j_k}^{\frac{1}{p_c}}/(\log \lambda_{j_k})^{1/\sigma_n}), \ p_c = \frac{2(n+1)}{n-1}.$$

Improved ball-localized eigenfunction estimates

Can improved the ball-localized estimates of Hezari and Riviére. Just by using original 1988 spectral projection bounds, get:

Theorem

If $||e_{\lambda}||_2 = 1$, then there is a constant C = C(M, g) so that for all r > 0 smaller than the injectivity radius,

$$\|e_{\lambda}\|_{L^{\frac{2(n+1)}{n-1}}(M)} \leq C\lambda^{\frac{n-1}{2(n+1)}} \left(r^{-\frac{n+1}{4}} \sup_{x \in M} \|e_{\lambda}\|_{L^{2}(B_{r}(x))}\right)^{\frac{2}{n+1}}.$$
 (16)

Corollary

If the geodesic flow on (M, g) is ergodic, then there is a density one sequence of eigenvalues, $\{\lambda_{j_k}\}$, so that

$$\|e_{\lambda_{j_k}}\|_{L^{\frac{2(n+1)}{n-1}}(M)} = o(\lambda_{j_k}^{\frac{n-1}{2(n+1)}}).$$

Open problems: nontrivial $L^2(B_r)$ estimates

Easy to see that for $0 < r \ll 1$, have uniform bounds

$$|e_{\lambda}||_{L^{2}(B_{r}(x))} \leq Cr^{\frac{1}{2}}.$$
 (17)

This estimate is saturated by zonal functions for all r (and by highest weight spherical harmonics if $0 < r \ll \lambda^{-\frac{1}{2}}$).

Question: When can you beat the trivial bound (17)?

Seems difficult. Techniques used to prove non-trivial L^2 bounds over small tubes for nonpositive curvature don't seem to apply.

Using Bérard's log-improved sup-norm estimates for nonpos curvature, *can* show that get log-improvements for (16) when $r = \lambda^{-1}$, and then use this fact and L^{∞} variation of localized L^{p} -bounds to recover his sup-norm estimates. But latter argument is circular.

Can also recover $||Q_k||_{L^p(S^n)}$ by using (16) and knowledge of $||Q_k||_{L^2(B_r(x))}$.