Kakeya-Nikodym estimates for eigenfunctions

Chris Sogge (Johns Hopkins University)
Joint work with:
Matthew Blair (University New Mexico)
\& Steve Zelditch (Northwestern University)
Xuehua Chen (Northwestern University)

Overview

Let (M, g) be a 2-dimensional compact Riemannian manifold with eigenfunctions

$$
-\Delta_{g} e_{\lambda}=\lambda^{2} e_{\lambda}, \quad \int_{M}\left|e_{\lambda}\right|^{2} d V_{g}=1
$$

Basic questions: When do high frequency eigenfunctions concentrate on lower dimensional sets? When not? Role of geometry/dynamics? How can you measure this?

1. Kakeya-Nikodym estimates, $L^{4}(M)$-norms, and quantum scarring. L^{4}-norms as scar detectors.
2. Small L^{4}-norms and no extreme scarring for nonpositive curvature. Period integrals.

L^{p} norms of eigenfunctions

Let $\sigma(p)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)$ if $2<p \leq 6$ and $\sigma(p)=2\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2}$ if
$2 \leq p \leq \infty$. Then

$$
\left\|e_{\lambda}\right\|_{p} \lesssim \lambda^{\sigma(p)}\left\|e_{\lambda}\right\|_{2}
$$

- Sharp for sphere
- Also sharp for any manifold if, instead of eigenfunctions, you measure bounds for functions whose spectrum lie in unit bands, $[\lambda, \lambda+1]$. So one of our goals is to see when eigenfunctions do not look like these "quasimodes".
- CS was interested in above estimate for $p \geq 6$ since then $\sigma(p)$ is the critical index for Bochner-Riesz. Used these bounds to prove Böchner-Riesz bounds, as well as Hörmander multiplier theorem (latter with Seeger, $p=\infty$ relevant).
- Until recently, bounds for other range $2<p<6$ were "afterthought". Turn out to be key for above questions.
- Special case, $\left\|e_{\lambda}\right\|_{4} \lesssim \lambda^{\frac{1}{8}}$.

Proof of L^{p} norms of eigenfunctions

Use reproducing formula, $e_{\lambda_{j}}=\rho\left(\lambda_{j}-\sqrt{-\Delta_{g}}\right) e_{\lambda}$, if $\rho(0)=1$ $\rho\left(\lambda_{j}-\sqrt{-\Delta_{g}}\right) f=\sum_{k} \rho\left(\lambda_{j}-\lambda_{k}\right) E_{k} f, E_{k}=$ proj on eigensp w/e.v. λ_{k}
For if $f=e_{\lambda_{j}}$ all terms 0 except $k=j$ term which is $\rho(0) e_{\lambda_{j}}=e_{\lambda_{j}}$. If $\rho \in \mathcal{S}$ and $\hat{\rho}(t)=0, t \not \approx \delta=\operatorname{lnj}(M) / 2$ use formula

$$
\rho\left(\lambda-\sqrt{-\Delta_{g}}\right)=\frac{1}{2 \pi} \int_{-\delta}^{\delta} \hat{\rho}(t) e^{i \lambda t} e^{-i t \sqrt{-\Delta_{g}}} d t
$$

and small-time wave operator info to see that kernel is $\approx \lambda^{\frac{1}{2}} a\left(d_{g}(x, y)\right) e^{i \lambda d_{g}(x, y)} \mathrm{w} / d_{g}$ Riemannian distance, $a \in C^{\infty}(\mathbb{R})$.

Finish proof with Hörmander/Stein's oscillatory integral theorem (and Gauss' lemma).
This local approach cannot yield L^{p}-improvements. Instead need to use "dilated" reproducing operators $\rho\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right), T \gg 1$. Hard since need to understand wave and geodesic flow dynamics up to times $\approx T$. Need: Global harmonic analysis.

Relevance of Gauss lemma (geometry)

Gauss: Given $p \in M$, $\exp _{p}: T_{p} M \rightarrow M$ diffeo near $0 \&$ images of spheres of small radius in $T_{p} M \perp$ to all geodesics starting at p.

Google translation: This and the fact that $y \rightarrow \nabla_{x} d_{g}(x, y)=\left\{\xi: \sum g^{j k}(x) \xi_{j} \xi_{k}=1\right\}$ is convex allows you to control certain 2nd and 3rd mixed derivatives of distance function: Rank $\nabla_{x} \nabla_{y} d_{g}(x, y) \equiv n-1$, and if γ geodesic ray starting at x and $v=\dot{\gamma}(0), \nabla_{y}\left\langle v, \nabla_{x}\right\rangle d_{g}(x, y)=0, y=\gamma(t)$, but, if $\mu \nVdash \dot{\gamma}(t),\left(\left\langle\mu, \nabla_{y}\right\rangle\right)^{2}\left\langle v, \nabla_{x}\right\rangle d_{g}(x, y) \neq 0, y=\gamma(t)$.

I) Kakeya-Nikodym estimates

Link "global" problem of improved L^{4}-bounds with familiar "local object": Let Π denote the space of unit-length geodesics in M, and $\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma)$ a $\lambda^{-\frac{1}{2}}$ tube about $\gamma \in \Pi$ (points dist $\lambda^{-\frac{1}{2}}$ from γ. Then:
Theorem 1.(Bourgain 2009, CS 2011). Given (M, g) T.F.A.E.:

1. $\left\|e_{\lambda}\right\|_{4}=o\left(\lambda^{\frac{1}{8}}\right)$
2. $\sup _{\gamma \in \Pi} \int_{\gamma}\left|e_{\lambda}\right|^{2} d s=o\left(\lambda^{\frac{1}{2}}\right)$
3. $\sup _{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda-\frac{1}{2}}(\gamma)}\left|e_{\lambda}\right|^{2} d V_{g}=o(1)$

Burq, Gérard, Tzvetkov (2007) (cf. Reznikov): One has
"restriction estimates": $\int_{\gamma}\left|e_{\lambda}\right|^{2} d s=O\left(\lambda^{\frac{1}{2}}\right)$ (\& sharp for S^{2}).
Obviously 2) $\Longrightarrow 3$). Bourgain: 1) $\Longrightarrow 2$). CS 3) $\Longrightarrow 1$) CS also showed that automatically have $\int_{\gamma}\left|e_{\lambda}\right|^{2} d s=o\left(\lambda^{\frac{1}{2}}\right)$ if γ not unit segment of periodic geodesic.

Tube estimates vs Restriction estimates

Can foliate $\lambda^{-\frac{1}{2}}$-tube $T_{x^{-k}}\left(\gamma_{0}\right)$
by $O\left(\lambda^{-\frac{1}{2}}\right)$-width of geodesics $\gamma \approx \gamma_{0}$
Thus,

$$
\int_{\gamma}\left|e_{\lambda}\right|^{2} d s \leq \varepsilon \lambda^{\frac{1}{2}} \Rightarrow \int_{T_{\lambda}{ }_{\lambda}^{-\frac{1}{2}}\left(x_{0}\right)}\left|e_{\lambda}\right|^{2} d V_{g} \leqslant \varepsilon
$$

Only possible badcose

$$
\gamma_{0} \in \gamma_{\text {per }}=\gamma
$$

If not sin yer not periodic

$$
\begin{aligned}
\Rightarrow & \int_{\gamma_{0}}\left|e_{\lambda}\right|^{2} d s=0\left(\lambda^{k}\right) \\
& \int_{\sigma_{x}^{b} b}\left(\left.\gamma_{0} e_{1}\right|^{2} d V_{g}=0(1)\right.
\end{aligned}
$$

$7 / 25$

A Kakeya-Nikodym inequality

$$
\begin{equation*}
\left\|e_{\lambda}\right\|_{L^{4}(M)} \leq C \lambda^{\frac{1}{8}}\left\|e_{\lambda}\right\|_{L^{2}(M)}^{\frac{3}{4}} \sup _{\gamma \in \Pi}\left\|e_{\lambda}\right\|_{L^{2}\left(\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma)\right)}^{\frac{1}{4}} \tag{1}
\end{equation*}
$$

- Bourgain: earlier version with $\lambda^{\frac{1}{8}+\varepsilon}, \forall \varepsilon$.
- Above has right power of λ, but not happy with red powers. Córdoba's BR work and Mockenhaupt-Seeger-CS suggests $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- Issues with getting this, since in Córdoba's approach (or MSS) maximal operators go on square functions coming from angular decomposition, and not just on e.g., $\left(e_{\lambda}\right)^{2}$.
Above KN estimate follows from arithmetic and CS estimate:

$$
\begin{align*}
\int\left|e_{\lambda}\right|^{4} d V_{g} & \leq C_{0} N^{-1} \lambda^{\frac{1}{4}}\left\|e_{\lambda}\right\|_{L^{2}(M)}^{2}\left\|e_{\lambda}\right\|_{L^{4}(M)}^{2} \\
& +C_{0} N \lambda^{\frac{1}{2}}\left\|e_{\lambda}\right\|_{L^{2}(M)}^{2}\left(\sup _{\gamma} \int_{\mathcal{T}_{\lambda^{-\frac{1}{2}}(\gamma)}}\left|e_{\lambda}\right|^{2} d V_{g}\right), \forall N \tag{2}
\end{align*}
$$

Proof: Merging Hörmander's and Córdoba's approach

$\chi_{\lambda} e_{\lambda}=\rho\left(\lambda-\sqrt{-\Delta_{g}}\right) e_{\lambda}=e_{\lambda}, \chi_{\lambda}(x, y)=\lambda^{\frac{1}{2}} e^{i \lambda d_{g}(x, y)} a(x, y)$, where $a(x, y)=0$ unless $d_{g}(x, y) \approx \delta$. Take $f=e_{\lambda}$. Want:

$$
\begin{gathered}
\int\left(\chi_{\lambda} f\right)^{2} \overline{f^{2}} \lesssim N^{-\frac{1}{2}} \lambda^{\frac{1}{4}}\|f\|_{2}^{2}\|f\|_{4}^{2}+N \lambda^{\frac{1}{2}}\|f\|_{2}^{2} \times \sup \int_{\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma)}|f|^{2} . \\
\left(\chi_{\lambda} f\right)^{2}=\lambda \int_{\theta \geq N \lambda^{-\frac{1}{2}}}+\int_{\theta \leq N \lambda^{-\frac{1}{2}}} e^{i \lambda\left(d_{g}(x, y)+d_{g}(x, z)\right)} a(x, y) a(x, z) f(y) f(z) d y d z \\
=H_{N}(f \otimes f)(x)+C_{N}(f \otimes f)(x) .
\end{gathered}
$$

\star Hörmander: $\left\|H_{N}(f \otimes f)\right\|_{2} \lesssim \lambda \lambda^{-\frac{3}{4}} N^{-\frac{1}{2}}\|f\|_{2}^{2}$. (1st term in RHS) *If you replace $\left(\chi_{\lambda} f\right)^{2}$ by $C_{1}(f \otimes f)$ (i.e., y and z in same $\lambda^{-1 / 2}$-sectors about x), dominated by 2 nd term in RHS w/ $N=1$. General case $N \in \mathbb{N}$ by Cauchy-Schwarz and Gauss for this.

With Blair/Zelditch: Refined and microlocal KN bounds

Theorem 2. Given $0<\varepsilon_{0} \leq \frac{1}{2}$,

$$
\begin{equation*}
\left\|e_{\lambda}\right\|_{L^{4}(M)} \lesssim_{\varepsilon_{0}} \lambda^{\frac{\varepsilon_{0}}{4}}\left\|e_{\lambda}\right\|_{L^{2}(M)}^{\frac{1}{2}} \times\left[\sup _{\gamma \in \Pi}\left(\lambda^{\frac{1}{2}-\varepsilon_{0}} \int_{\mathcal{T}^{-\frac{1}{2}+\varepsilon_{0}}(\gamma)}\left|e_{\lambda}\right|^{2} d V_{g}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

Remarks: If $\varepsilon_{0}=\frac{1}{2}$, this is just 1980 s CS theorem, $\left\|e_{\lambda}\right\|_{4} \lesssim \lambda^{\frac{1}{8}}$. If powers $\left(\frac{1}{2}, \frac{1}{2}\right)$ replaced by worse ones $\left(\frac{3}{4}, \frac{1}{4}\right)$, but $\varepsilon_{0}=0$ (and no loss), this is above CS 2011 KN estimate (1) above. Not sure, whether we can push above down to $\varepsilon_{0}=0$. Would be sharp. We prove (3) using microlocal analysis and obtaining a stronger estimate where supremum in right is replaced by

$$
\theta_{0}^{-\frac{1}{2}} \sup _{\gamma \in \Pi}\left\|Q_{\gamma}^{\theta_{0}}(x, D) e_{\lambda}\right\|_{L^{2}(M)}, \quad \theta_{0}=\lambda^{\frac{1}{2}-\varepsilon_{0}}
$$

and the PDOs Q_{γ}^{θ} denote natural ones with symbols living on θ tubes about the geodesic in $S^{*} M$.
Can use this stronger microlocal KN result to recover result of CS-Zelditch that generic e.f.'s have $L^{4}(M)$ norms of size $o\left(\lambda^{\frac{1}{8}}\right)$

Model case: Relations with Zygumund's $L^{4}\left(\mathbb{T}^{2}\right)$-thm

A motivation for obtaining inequalities like (3) w/improved powers on sup is potential applications to bnds arising in number theory.
S. Marshall, P. Sarnak ... have begun using restriction estimates....

Consider the 2-torus, and suppose that one has uniform bounds

$$
\begin{equation*}
\int_{\gamma}\left|e_{\lambda}\right|^{2} d s \leq C \tag{4}
\end{equation*}
$$

for every unit geodesic γ in $\mathbb{T}^{2} \simeq[-\pi, \pi)^{2}$ and L^{2}-normalized toral e.f. $e_{\lambda}=\sum_{\left\{k \in \mathbb{Z}^{2}:|k|=\lambda\right\}} a_{k} e^{i k \cdot x}$.
By earlier observation, (4), implies supremum in (3) is $O(1)$ and so conclude $\left\|e_{\lambda}\right\|_{L^{4}\left(\mathbb{T}^{2}\right)} \lesssim \varepsilon_{0} \lambda^{\varepsilon_{0}}$ for any $\varepsilon_{0}>0$.
If (3) were valid with $\varepsilon_{0}=0$ and (4) were valid, we'd recover Zygmund's theorem: $\left\|e_{\lambda}\right\|_{4} \leq C$.
Recent observation of Sarnak: Have (4) iff the number of lattice points in \mathbb{Z}^{2} on arcs of length $\lambda^{\frac{1}{2}}$ of λS^{1} is $\mathrm{O}(1)$. (Result of Cilleruelo-Córdoba (1992) says OK for arcs length $\lambda^{\frac{1}{2}-\delta}$.)

Quantum unique ergodicity versus scarring

L^{2}-normalized e.f.'s define a probability measures $\left|e_{\lambda}\right|^{2} d V_{g}$. Say that we have quantum unique ergodicity for (M, g) if the weak* limit of these measures is the uniform measure $d V_{g} /|M|$.
Special case: $\Omega \subset M$ (good) open set have

$$
\begin{equation*}
\int_{\Omega}\left|e_{\lambda}\right|^{2} d V_{g} \rightarrow \frac{|\Omega|}{|M|} . \tag{5}
\end{equation*}
$$

If we don't have $\left|e_{\lambda}\right|^{2} d V_{g} \rightharpoonup d V_{g} /|M|$, say there is scarring. More natural, to consider "microlocal measures"

$$
a \in C^{\infty}\left(S^{*} M\right) \rightarrow\left\langle a(x, D) e_{\lambda}, e_{\lambda}\right\rangle=\int_{S^{*} M} a(x, \xi) d \mu_{\lambda},
$$

which are the "microlocal lifts" of $\left|e_{\lambda}\right|^{2} d V_{g}$. QUE if these measures tend weekly to uniform Liouville prob msr on $S^{*} M$.

Conjecture Rudnick \& Sarnak: QUE if curvatures negative. (Only known in very special cases (arithmetic), e.g. Lindenstrauss.)

Quantum unique ergodicity vs scarring, cont.

Known by Shnirelman / Colin de Verdiére / Zelditch that if geodesic flow in $S^{*} M$ is ergodic (automatic for neg curv) then have that microlocal lifts $d \mu_{\lambda_{j_{k}}}$ tend to Liouville prob measure for a subsequence of e.v.'s, $\left\{\lambda_{j_{k}}\right\}$, of density one. So, in this case, if (5) breaks down, must do so in very sparse subsequence of e.v.'s. Also known that if a measure on $S^{*} M$ is in the limit set, must be invariant under geodesic flow.
Natural question: Can you rule out for neg curv $\left|e_{\lambda_{j_{k}}}\right|^{2} d V_{g}$ tending through subsequence of e.v.'s to linear combination of delta-measure, $d s_{\gamma_{\text {per }}}$ on periodic geodesic and another invariant measure?
Anantharaman (2008): Limit for neg curvature cannot just be probability measure on $\gamma_{\text {per }}$ (i.e., $d s_{\gamma_{\text {per }}} /$ Length $\left(\gamma_{\text {per }}\right)$), or a finite combination of such.
At this stage can't rule out certain combinations of these and uniform measure on $S^{*} M$, though.

Left pictures: Unstable periodic orbits.
Right pictures: Wave functions $\left|e_{\lambda}\right|^{2}$ are large superimposed over these orbits.

Source: Eric J. Heller, Harvard Physics Dept. (www.ericjhellergallery.com)

Extreme scarring

The normalized "highest weight" sph. har. $Q_{k} \approx k^{\frac{1}{4}}\left(x_{1}+i x_{2}\right)^{k}$ on $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ Satisfy

$$
\left|Q_{k}\right| \approx k^{\frac{1}{4}} \exp \left(k \ln \left(\left(1-x_{3}^{2}\right)^{1 / 2}\right)\right) \approx k^{\frac{1}{4}} e^{-k x_{3}^{2} / 2}
$$

(Gaussian beams), whence, $\left|Q_{k}\right|^{2} d V \approx k^{\frac{1}{2}} e^{-k x_{3}^{2}} d V$ tends to delta measure on equator, $x_{3}=0$. So cannot have (5) (for instance) if $\Omega \subset S^{2}$ is disjoint from equator.
Note that Q_{k} e.f.'s w/e.v. $\sqrt{k(k+n-1)} \approx k$, and $\left\|Q_{k}\right\|_{L^{4}\left(S^{2}\right)} \approx k^{\frac{1}{8}}$, and they have $\Omega(1) L^{2}(d V)$-mass in a $k^{-\frac{1}{2}}$-tube about equator (a periodic geodesic on S^{2}).
Worst possible enemy:

$L^{4}(M)$-norms as scarring detectors

$\left\|e_{\lambda}\right\|_{L^{4}(M)}=\Omega\left(\lambda^{1 / 8}\right)$ implies must have scarring:
Specifically, can find a geodesic segment, γ_{0}, of length 2 so that if $\Omega=\mathcal{T}_{\delta}\left(\gamma_{0}\right) \exists$ subsequence of e.v.'s $\left\{\lambda_{j_{k}}\right\}$ so that for small $\delta>0$

$$
\begin{equation*}
\int_{\mathcal{T}_{\delta}\left(\gamma_{0}\right)}\left|e_{\lambda_{j_{k}}}\right|^{2} d V_{g} \nrightarrow\left|\mathcal{T}_{\delta}\left(\gamma_{0}\right)\right| /|M| \approx \delta \tag{6}
\end{equation*}
$$

Assumptions $\Longrightarrow \exists$ subsequence of e.v.'s s.t. $\left\|e_{\lambda_{j_{k}}}\right\|_{4} \geq c_{1} \lambda_{j_{k}}^{1 / 8}$. By CS 2011 KN theorem $\Longrightarrow \exists \gamma_{\lambda_{j_{k}}} \in \Pi$ and $\lambda_{j_{k}}^{-1 / 2}$-tubes $\mathcal{T}_{j_{k}}$ about these and a constant $c_{0}>0$ so that

$$
\int_{\mathcal{T}_{j_{k}}}\left|e_{\lambda_{j_{k}}}\right|^{2} d V_{g} \geq c 0
$$

$\Pi \approx M \times S^{1}$ compact \Longrightarrow after passing to further subsequence can assume $\gamma_{\lambda_{j_{k}}} \rightarrow \gamma_{\infty} \in \Pi$. If γ_{0} geod of length 2 containing γ_{∞} $\mathrm{w} /$ same center, have $\mathcal{T}_{j_{k}} \subset \mathcal{T}_{\delta}\left(\gamma_{0}\right)$, k large $\Longrightarrow(6)$ if $\delta \ll c_{0}$.

Shrinking tubes argument for scarring

2) Nonpos curv: Small L^{4}-norms \& no extreme scarring

Theorem 3.(CS-Zelditch). If (M, g) has nonpositive curvature then

$$
\begin{equation*}
\sup _{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-\frac{1}{2}}}(\gamma)}\left|e_{\lambda}\right|^{2} d V_{g}=o(1) \tag{7}
\end{equation*}
$$

By (7) and CS theorem, know that for manifolds with nonpositive curvature we have $\left\|e_{\lambda}\right\|_{L^{4}(M)}=o\left(\lambda^{\frac{1}{8}}\right)$, and also the restriction estimates $\left(\int_{\gamma}\left|e_{\lambda}\right|^{2} d s\right)^{1 / 2}=o\left(\lambda^{1 / 4}\right), \gamma \in \Pi$, improving on Burq-Gérard-Tzvetkov in this case. Recall blue estimates are equivalent when $n=2$.
X. Chen and CS: stronger restriction ests $\left(\int_{\gamma}\left|e_{\lambda}\right|^{4} d s\right)^{1 / 4}=o\left(\lambda^{1 / 4}\right)$. We shall sketch proof of (7) using proof of XC-CS.
M. Blair and CS generalized (7) to higher dimensions and obtained $o-L^{p}$ estimates too for nonpositive curvature. Turns out that (unlike 2-d), cannot use restriction estimates for latter; only L^{2}-bounds for tubes work. Restriction estimates too singular.

Setting up proof of o-restriction estimates nonpos curv

Recall we have $(7) \Longleftrightarrow \sup _{\gamma \in \Pi}\left\|e_{\lambda}\right\|_{L^{2}(\gamma)}=o\left(\lambda^{\frac{1}{4}}\right)$
Recall $\rho\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right) e_{\lambda}=e_{\lambda}$ if $\rho(0)=1$. So have above if
$\left\|\rho\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right)\right\|_{L^{2}(M) \rightarrow L^{2}(\gamma)} \leq C \lambda^{\frac{1}{4}} / T^{\frac{1}{4}}, \lambda$ large.
$\left\|\chi\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right)\right\|_{L^{2}(\gamma) \rightarrow L^{2}(\gamma)} \leq C \lambda^{1 / 2} / \sqrt{T}, \chi=|\rho|^{2}, \quad \lambda \geq \Lambda(T)$.

We may assume $\rho \in \mathcal{S}$ is even and $\hat{\rho}(t)=0,|t| \geq 1 / 2$. Then $\chi \in \mathcal{S}$ is even and $\hat{\chi}(t)=0,|t|>1$ and so

$$
\chi\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right)=\frac{1}{\pi T} \int_{-T}^{T} \hat{\chi}(t / T) e^{i t \lambda} \cos \left(t \sqrt{-\Delta_{g}}\right) d t+O\left(\lambda^{-N}\right)
$$

Hadamard's miracles

By Cartan-Hadamard theorem, given any point $x_{0} \in M$, the map

$$
\kappa=\exp _{x_{0}}: T M \cong \mathbb{R}^{2} \rightarrow M
$$

is covering map. (Hadamard $1898 n=2$)
Therefore, we have the close cousin of the classical Poisson summation formula:

$$
\cos \left(t \sqrt{-\Delta_{g}}\right)(x, y)=\sum_{\alpha \in \Gamma} \cos \left(t \sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x}, \alpha(\tilde{y}))
$$

- $\Gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ deck transformations (i.e., group of diffeomorphisms s.t. $\kappa \circ \alpha=\kappa$)
- $M \cong \mathbb{R}^{2} / \Gamma$
- Here, if $D \subset \mathbb{R}^{2}$ fund. domain for M, identify $x \in M \mathrm{w} /$ $\tilde{x} \in D$.
- $\tilde{g}=\kappa^{*} g$ (pullback of metric g on M via covering map)
- Last miracle: Can compute $\cos t \sqrt{-\Delta_{\tilde{g}}}$ using Hadamard parametrix (1923) as $\left(\mathbb{R}^{2}, \tilde{g}\right)$ no conjugate points, by 1898 theorem.

Example: Double torus (constant curvature $=-1$)

Hyperbolic octagon is a fundamental domain for double torus

Translations of fundamental domain by deck transformations in Poincaré disk

Proof of o-restriction estimates using oscillatory integrals

 Using Fourier transform formula for $\chi\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)\right)$ and formula for $\cos t \sqrt{-\Delta_{g}}$, have desired $L^{2}(\gamma) \rightarrow L^{2}(\gamma)$ bounds for this restriction of this operator if for $\lambda \gg 1$$$
\begin{equation*}
\left(\int_{-1 / 2}^{1 / 2}\left|\int_{-1 / 2}^{1 / 2} K(t, s) h(s) d s\right|^{2} d t\right)^{1 / 2} \leq C \frac{\lambda^{1 / 2}}{T^{\frac{1}{2}}}\left(\int_{-1 / 2}^{1 / 2}|h(s)|^{2} d s\right)^{1 / 2}, \tag{8}
\end{equation*}
$$

where if $\tilde{\gamma}(t),|t| \leq 1 / 2$ is lift of unit length geodesic $\gamma \in \Pi$,

$$
\begin{gathered}
\chi\left(T\left(\lambda-\sqrt{-\Delta_{g}}\right)(\gamma(t), \gamma(s))=K(t, s)=\sum_{\alpha \in \Gamma} K_{\alpha}(t, s)\right. \\
K_{\alpha}(t, s)=\frac{1}{\pi T} \int_{-T}^{T} \hat{\chi}(\tau / T) e^{i \lambda \tau}\left(\cos \tau \sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{\gamma}(t), \alpha(\tilde{\gamma}(s))) d \tau .
\end{gathered}
$$

Finite sum: (potentially $\exp (c T)$ terms!!) Since $K_{\alpha}=0$ if $d_{\tilde{g}}(D, \alpha(D))>T$. By Hadamard parametrix:

$$
K_{\alpha} \approx T^{-1} \lambda^{1 / 2} e^{i \lambda d_{\tilde{g}}(\tilde{\gamma}(t), \alpha(\tilde{\gamma}(s)))} /\left(d_{\tilde{g}}(\tilde{\gamma}(t), \tilde{\alpha}(\gamma(s)))^{1 / 2}+1 .\right. \text { o.t. }
$$

Let $T_{\alpha}: L^{2}([-1 / 2,1 / 2]) \rightarrow L^{2}([-1 / 2,1 / 2])$ integral operator with kernel K_{α}.

Proof, continued: Stabilizers and non-Stabilizers

Clearly $\left\|T_{\text {Identity }}\right\|_{L^{2} \rightarrow L^{2}} \leq C \lambda^{\frac{1}{2}} / T$, as $d_{\tilde{g}}(\tilde{\gamma}(t), \tilde{\gamma}(s))=|t-s|$.

$$
T_{\alpha} h=\lambda^{\frac{1}{2}} T^{-1} \int_{-1 / 2}^{1 / 2} e^{i \lambda \phi_{\alpha}(t, s)} a_{\alpha}(t, s) h(s) d s, \quad \alpha \neq I \text { dentity },
$$

smooth osc int op if $\phi_{\alpha}(t, s)=d_{\tilde{g}}(\tilde{\gamma}(t), \alpha(\tilde{\gamma}(s))), a_{\alpha}=1 /\left(\phi_{\alpha}\right)^{1 / 2}$.
If $\tilde{\gamma}=\{\tilde{\gamma}(t): t \in \mathbb{R}\}$, then $\alpha(\tilde{\gamma})$ a geodesic (by Hadamard).
Two cases: i) $\alpha(\tilde{\gamma})=\tilde{\gamma}$, or ii) $\alpha(\tilde{\gamma}) \neq \tilde{\gamma}$
Case i): $\gamma \in \Pi$ must be a unit segment of a periodic geodesic of period ℓ, and $\alpha(\tilde{\gamma}(s))=\tilde{\gamma}(s+k \ell)$ for a unique $k \in \mathbb{Z}$. Then $\alpha \in \operatorname{Stab}(\tilde{\gamma})$ and $\phi_{\alpha} \equiv|t-s-k \ell|$, so trivial oscillators but $\left|K_{\alpha}\right| \leq C k^{-1 / 2}$. Thus,

Conclude that contribution of stabilizer group is as desired.
Suffices to show $\left\|T_{\alpha}\right\|_{L^{2} \rightarrow L^{2}} \leq c_{\alpha} \lambda^{1 / 4}, \alpha \notin \operatorname{Stab}(\tilde{\gamma})$ (smaller power of λ allows control of Huge Sum).

Non-stabilizers and oscillatory integrals (finally)

$T_{\alpha} h=\lambda^{\frac{1}{2}} T^{-1} \int_{-1 / 2}^{1 / 2} e^{i \lambda \phi_{\alpha}(t, s)} a_{\alpha}(t, s) h(s) d s, \quad \alpha(\tilde{\gamma}) \neq \tilde{\gamma}, \phi_{\alpha}=d_{\tilde{g}}(\tilde{\gamma}(t), \tilde{\alpha}(\gamma(s)))$

By Hadamard again: either i) $\tilde{\gamma}$ and $\alpha(\tilde{\gamma})$ are disjoint or ii) they intersect at unique point $x_{0}(\alpha)$

By Gauss: In case i) always have $\partial_{t} \partial_{s} \phi_{\alpha}(t, s) \neq 0$ and so get $\left\|T_{\alpha}\right\|_{L^{2} \rightarrow L^{2}} \leq c_{\alpha}$ in this case from Hörmander's osc integral theorem.

By Gauss again: In case ii) also have $\partial_{t} \partial_{s} \phi_{\alpha}(t, s) \neq 0$ if both $\tilde{\gamma}(t), \alpha(\tilde{\gamma}(s)) \neq x_{0}(\alpha)$, while if one equals $x_{0}(\alpha)$ have $\left|\partial_{t}^{2} \partial_{s} \phi_{\alpha}(t, s)\right|+\left|\partial_{t} \partial_{s}^{2} \phi_{\alpha}(t, s)\right| \neq 0$, and so by oscillatory integral theorem of Greenleaf-Seeger and Phong-Stein know $\left\|T_{\alpha}\right\|_{L^{2} \rightarrow L^{2}} \leq c_{\alpha} \lambda^{1 / 4}$.

Period integrals (joint with Xuehua Chen)

By a similar argument, can show that if (M, g) has strictly negative curvature and $\gamma_{p e r} \in M$ is a periodic geodesic, have

$$
\begin{equation*}
\int_{\gamma_{p e r}} e_{\lambda} d s=o(1), \quad \lambda \rightarrow \infty \tag{9}
\end{equation*}
$$

Using Kuznetsov trace formulae (1980) (constant curvature), Good (1983) and Hejhal (1982) showed above is $O(1)$.
Zelditch (1992) also obtained $O(1)$ bounds w/out curvature assumptions (and much more) using microlocal analysis.
Need to assume curvature is negative. For on $\mathbb{T}^{2} \cong[-\pi, \pi)^{2}$ if $e_{\lambda}\left(x_{1}, x_{2}\right)=\cos \lambda x_{1}, \lambda \in \mathbb{Z}$ and $\gamma_{\text {per }}=(0, t), t \in[-\pi, \pi)$, above integral $\equiv 2 \pi$.

Miracle allowing you to control oscillatory integrals arising in proof of (9): If the curvature is negative then the sum of the angles for quadrilaterals is strictly less than 360°

