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Overview

Let (M, g) be a 2-dimensional compact Riemannian manifold with
eigenfunctions

−Δgeλ = λ2eλ,



M

|eλ|2 dVg = 1.

Basic questions: When do high frequency eigenfunctions
concentrate on lower dimensional sets? When not? Role of
geometry/dynamics? How can you measure this?

1. Kakeya-Nikodym estimates, L4(M)-norms, and quantum
scarring. L4-norms as scar detectors.

2. Small L4-norms and no extreme scarring for nonpositive
curvature. Period integrals.
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Lp norms of eigenfunctions

Let σ(p) = 1
2(

1
2
− 1

p ) if 2 < p ≤ 6 and σ(p) = 2(12 − 1
p )−

1
2 if

2 ≤ p ≤ ∞. Then
eλp ≲ λσ(p)eλ2.

◮ Sharp for sphere
◮ Also sharp for any manifold if, instead of eigenfunctions, you

measure bounds for functions whose spectrum lie in unit
bands, [λ,λ+ 1]. So one of our goals is to see when
eigenfunctions do not look like these “quasimodes”.

◮ CS was interested in above estimate for p ≥ 6 since then σ(p)
is the critical index for Bochner-Riesz. Used these bounds to
prove Böchner-Riesz bounds, as well as Hörmander multiplier
theorem (latter with Seeger, p = ∞ relevant).

◮ Until recently, bounds for other range 2 < p < 6 were
“afterthought”. Turn out to be key for above questions.

◮ Special case, eλ4 ≲ λ
1
8 .
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Proof of Lp norms of eigenfunctions

Use reproducing formula, eλj
= ρ(λj −


−Δg )eλ, if ρ(0) = 1

ρ(λj−


−Δg )f =


k

ρ(λj−λk)Ek f , Ek = proj on eigensp w/ e.v. λk

For if f = eλj
all terms 0 except k = j term which is ρ(0)eλj

= eλj
.

If ρ ∈ S and ρ̂(t) = 0, t ∕≈ δ = Inj(M)/2 use formula

ρ(λ−


−Δg ) =
1

2π

 δ

−δ

ρ̂(t)e iλte−it
√

−Δg dt

and small-time wave operator info to see that kernel is

≈ λ
1
2 a(dg (x , y)) e

iλdg (x ,y) w/ dg Riemannian distance, a ∈ C∞(R).

Finish proof with Hörmander/Stein’s oscillatory integral theorem
(and Gauss’ lemma).

This local approach cannot yield Lp-improvements. Instead need
to use “dilated” reproducing operators ρ(T (λ−


−Δg )), T ≫ 1.

Hard since need to understand wave and geodesic flow dynamics
up to times ≈ T . Need: Global harmonic analysis.
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Relevance of Gauss lemma (geometry)

Gauss: Given p ∈ M, expp : TpM → M diffeo near 0 & images of
spheres of small radius in TpM ⊥ to all geodesics starting at p.

Google translation: This and the fact that
y → ∇xdg (x , y) = {ξ :


g jk(x)ξjξk = 1} is convex allows you to

control certain 2nd and 3rd mixed derivatives of distance function:
Rank ∇x∇ydg (x , y) ≡ n − 1, and if γ geodesic ray starting at x
and v = γ̇(0), ∇y 〈v ,∇x〉dg (x , y) = 0, y = γ(t),
but, if µ ∦ γ̇(t), (〈µ,∇y 〉)2〈v ,∇x〉dg (x , y) ∕= 0, y = γ(t).
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I) Kakeya-Nikodym estimates

Link “global” problem of improved L4-bounds with familiar “local
object”: Let Π denote the space of unit-length geodesics in M,

and T
λ− 1

2
(γ) a λ− 1

2 tube about γ ∈ Π (points dist λ− 1
2 from γ.

Then:

Theorem 1.(Bourgain 2009, CS 2011). Given (M, g) T.F.A.E.:

1. eλ4 = o(λ
1
8 )

2. supγ∈Π

γ
|eλ|2ds = o(λ

1
2 )

3. supγ∈Π

T
λ−

1
2
(γ)

|eλ|2 dVg = o(1)

Burq, Gérard, Tzvetkov (2007) (cf. Reznikov): One has

“restriction estimates”:

γ
|eλ|2 ds = O(λ

1
2 ) (& sharp for S2).

Obviously 2) =⇒ 3). Bourgain: 1) =⇒ 2). CS 3) =⇒ 1)

CS also showed that automatically have

γ
|eλ|2 ds = o(λ

1
2 ) if γ

not unit segment of periodic geodesic.
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A Kakeya-Nikodym inequality

eλL4(M) ≤ Cλ
1
8 eλ

3
4
L2(M)

sup
γ∈Π

eλ
1
4
L2(T

λ−
1
2
(γ))

. (1)

◮ Bourgain: earlier version with λ
1
8
+ε, ∀ε.

◮ Above has right power of λ, but not happy with red powers.
Córdoba’s BR work and Mockenhaupt-Seeger-CS suggests
(12 ,

1
2).

◮ Issues with getting this, since in Córdoba’s approach (or MSS)
maximal operators go on square functions coming from
angular decomposition, and not just on e.g., (eλ)

2.

Above KN estimate follows from arithmetic and CS estimate:


|eλ|4 dVg ≤ C0N
−1λ

1
4 eλ2L2(M)eλ2L4(M)

+ C0Nλ
1
2 eλ2L2(M)


sup
γ



T
λ−

1
2 (γ)

|eλ|2 dVg


, ∀N (2)
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Proof: Merging Hörmander’s and Córdoba’s approach

χλeλ = ρ(λ−

−Δg )eλ = eλ, χλ(x , y) = λ

1
2 e iλdg (x,y)a(x , y), where

a(x , y) = 0 unless dg (x , y) ≈ δ. Take f = eλ. Want:

(χλf )

2 f 2 ≲ N− 1
2λ

1
4 f 22f 24 + Nλ

1
2 f 22 × sup



T
λ
− 1

2
(γ)

|f |2.

(χλf )
2 = λ



θ≥Nλ− 1
2

+



θ≤Nλ− 1
2

e iλ(dg (x,y)+dg (x,z))a(x , y)a(x , z)f (y)f (z)dydz

= HN(f ⊗ f )(x) + CN(f ⊗ f )(x).

Hörmander: HN(f ⊗ f )2 ≲ λλ− 3
4N− 1

2 f 22. (1st term in RHS)

If you replace (χλf )
2 by C1(f ⊗ f ) (i.e., y and z in same

λ−1/2-sectors about x), dominated by 2nd term in RHS w/ N = 1.
General case N ∈ N by Cauchy-Schwarz and Gauss for this. 9 / 25



With Blair/Zelditch: Refined and microlocal KN bounds

Theorem 2. Given 0 < ε0 ≤ 1
2 ,

eλL4(M) ≲ε0 λ
ε0
4 eλ

1
2

L2(M) ×

sup
γ∈Π


λ

1
2
−ε0



T − 1
2
+ε0 (γ)

|eλ|2 dVg

 1
2

 1
2

(3)

Remarks: If ε0 =
1
2 , this is just 1980s CS theorem, eλ4 ≲ λ

1
8 .

If powers (12 ,
1
2) replaced by worse ones (34 ,

1
4), but ε0 = 0 (and no

loss), this is above CS 2011 KN estimate (1) above. Not sure,
whether we can push above down to ε0 = 0. Would be sharp.

We prove (3) using microlocal analysis and obtaining a stronger
estimate where supremum in right is replaced by

θ
− 1

2
0 sup

γ∈Π
Qθ0

γ (x ,D)eλL2(M), θ0 = λ
1
2
−ε0 ,

and the PDOs Qθ
γ denote natural ones with symbols living on θ

tubes about the geodesic in S∗M.

Can use this stronger microlocal KN result to recover result of

CS-Zelditch that generic e.f.’s have L4(M) norms of size o(λ
1
8 ) 10 / 25



Model case: Relations with Zygumund’s L4(T2)-thm

A motivation for obtaining inequalities like (3) w/ improved powers
on sup is potential applications to bnds arising in number theory.
S. Marshall, P. Sarnak ... have begun using restriction estimates....

Consider the 2-torus, and suppose that one has uniform bounds


γ
|eλ|2 ds ≤ C , (4)

for every unit geodesic γ in T2 ≃ [−π,π)2 and L2-normalized
toral e.f. eλ =


{k∈Z2:|k|=λ} ake

ik·x .

By earlier observation, (4), implies supremum in (3) is O(1) and so
conclude eλL4(T2) ≲ε0 λ

ε0 for any ε0 > 0.

If (3) were valid with ε0 = 0 and (4) were valid, we’d recover

Zygmund’s theorem: eλ4 ≤ C .

Recent observation of Sarnak: Have (4) iff the number of

lattice points in Z2 on arcs of length λ
1
2 of λS1 is O(1). (Result of

Cilleruelo-Córdoba (1992) says OK for arcs length λ
1
2
−δ.)
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Quantum unique ergodicity versus scarring

L2-normalized e.f.’s define a probability measures |eλ|2 dVg . Say
that we have quantum unique ergodicity for (M, g) if the weak∗
limit of these measures is the uniform measure dVg/|M|.
Special case: Ω ⊂ M (good) open set have



Ω
|eλ|2 dVg → |Ω|

|M|
. (5)

If we don’t have |eλ|2 dVg ⇀ dVg/|M|, say there is scarring.

More natural, to consider “microlocal measures”

a ∈ C∞(S∗M) → 〈a(x ,D)eλ, eλ〉 =


S∗M
a(x , ξ) dµλ,

which are the “microlocal lifts” of |eλ|2dVg . QUE if these
measures tend weekly to uniform Liouville prob msr on S∗M.

Conjecture Rudnick & Sarnak: QUE if curvatures negative.
(Only known in very special cases (arithmetic), e.g. Lindenstrauss.)
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Quantum unique ergodicity vs scarring, cont.

Known by Shnirelman / Colin de Verdiére / Zelditch that if
geodesic flow in S∗M is ergodic (automatic for neg curv) then
have that microlocal lifts dµλjk

tend to Liouville prob measure for
a subsequence of e.v.’s, {λjk}, of density one. So, in this case, if
(5) breaks down, must do so in very sparse subsequence of e.v.’s.

Also known that if a measure on S∗M is in the limit set, must be
invariant under geodesic flow.

Natural question: Can you rule out for neg curv |eλjk
|2dVg

tending through subsequence of e.v.’s to linear combination of
delta-measure, dsγper on periodic geodesic and another invariant
measure?

Anantharaman (2008): Limit for neg curvature cannot just be
probability measure on γper (i.e., dsγper /Length (γper )), or a finite
combination of such.

At this stage can’t rule out certain combinations of these and
uniform measure on S∗M, though.
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Left pictures: Unstable periodic orbits.

Right pictures: Wave functions |eλ|2 are large superimposed over
these orbits.

Source: Eric J. Heller, Harvard Physics Dept.
(www.ericjhellergallery.com)
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Extreme scarring

The normalized “highest weight” sph. har. Qk ≈ k
1
4 (x1 + ix2)

k on
S2 = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1} Satisfy

|Qk | ≈ k
1
4 exp(k ln((1− x23 )

1/2)) ≈ k
1
4 e−kx2

3/2,

(Gaussian beams), whence, |Qk |2dV ≈ k
1
2 e−kx2

3 dV tends to delta
measure on equator, x3 = 0. So cannot have (5) (for instance) if
Ω ⊂ S2 is disjoint from equator.

Note that Qk e.f.’s w/ e.v.


k(k + n − 1) ≈ k , and

QkL4(S2) ≈ k
1
8 , and they have Ω(1) L2(dV )-mass in a k−

1
2 -tube

about equator (a periodic geodesic on S2).

Worst possible enemy:
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L4(M)-norms as scarring detectors

eλL4(M) = Ω(λ1/8) implies must have scarring:

Specifically, can find a geodesic segment, γ0, of length 2 so that if
Ω = Tδ(γ0) ∃ subsequence of e.v.’s {λjk} so that for small δ > 0



Tδ(γ0)
|eλjk

|2dVg ∕−→ |Tδ(γ0)|/|M| ≈ δ. (6)

Assumptions =⇒ ∃ subsequence of e.v.’s s.t. eλjk
4 ≥ c1λ

1/8
jk

.

By CS 2011 KN theorem =⇒ ∃ γλjk
∈ Π and λ

−1/2
jk

-tubes Tjk
about these and a constant c0 > 0 so that



Tjk

|eλjk
|2dVg ≥ c0.

Π ≈ M × S1 compact =⇒ after passing to further subsequence
can assume γλjk

→ γ∞ ∈ Π. If γ0 geod of length 2 containing γ∞
w/ same center, have Tjk ⊂ Tδ(γ0), k large =⇒ (6) if δ ≪ c0.
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Shrinking tubes argument for scarring
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2) Nonpos curv: Small L4-norms & no extreme scarring

Theorem 3.(CS-Zelditch). If (M, g) has nonpositive curvature
then

sup
γ∈Π



T
λ
− 1

2
(γ)

|eλ|2 dVg = o(1). (7)

By (7) and CS theorem, know that for manifolds with nonpositive

curvature we have eλL4(M) = o(λ
1
8 ), and also the restriction

estimates (

γ
|eλ|2ds)1/2 = o(λ1/4), γ ∈ Π, improving on

Burq-Gérard-Tzvetkov in this case. Recall blue estimates are
equivalent when n = 2.

X. Chen and CS: stronger restriction ests (

γ |eλ|4 ds)1/4 = o(λ1/4).

We shall sketch proof of (7) using proof of XC-CS.

M. Blair and CS generalized (7) to higher dimensions and
obtained o-Lp estimates too for nonpositive curvature. Turns out
that (unlike 2-d), cannot use restriction estimates for latter; only
L2-bounds for tubes work. Restriction estimates too singular.

18 / 25



Setting up proof of o-restriction estimates nonpos curv

Recall we have (7) ⇐⇒ supγ∈Π eλL2(γ) = o(λ
1
4 )

Recall ρ(T (λ−

−Δg ))eλ = eλ if ρ(0) = 1. So have above if

ρ(T (λ−


−Δg ))L2(M)→L2(γ) ≤ Cλ
1
4 /T

1
4 , λ large. ⇐⇒

χ(T (λ−


−Δg ))L2(γ)→L2(γ) ≤ Cλ1/2/
√
T , χ = |ρ|2, λ ≥ Λ(T ).

We may assume ρ ∈ S is even and ρ̂(t) = 0, |t| ≥ 1/2. Then
χ ∈ S is even and χ̂(t) = 0, |t| > 1 and so

χ(T (λ−


−Δg )) =
1

πT

 T

−T
χ̂(t/T )e itλ cos(t


−Δg ) dt+O(λ−N).
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Hadamard’s miracles

By Cartan-Hadamard theorem, given any point x0 ∈ M, the map

κ = expx0 : TM
∼= R2 → M

is covering map. (Hadamard 1898 n = 2)
Therefore, we have the close cousin of the classical Poisson
summation formula:

cos(t


−Δg )(x , y) =


α∈Γ
cos(t


−Δg̃ )(x̃ ,α(ỹ))

◮ Γ : R2 → R2 deck transformations (i.e., group of
diffeomorphisms s.t. κ ◦ α = κ)

◮ M ∼= R2/Γ
◮ Here, if D ⊂ R2 fund. domain for M, identify x ∈ M w/

x̃ ∈ D.
◮ g̃ = κ∗g (pullback of metric g on M via covering map)
◮ Last miracle: Can compute cos t


−Δg̃ using Hadamard

parametrix (1923) as (R2, g̃) no conjugate points, by 1898
theorem. 20 / 25



Example: Double torus (constant curvature = −1)

Hyperbolic octagon is a fundamental domain for double torus

Translations of fundamental domain by
deck transformations in Poincaré disk
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Proof of o-restriction estimates using oscillatory integrals

Using Fourier transform formula for χ(T (λ−


−Δg )) and

formula for cos t


−Δg , have desired L2(γ) → L2(γ) bounds for
this restriction of this operator if for λ ≫ 1

 1/2

−1/2


 1/2

−1/2
K (t, s)h(s) ds

2dt
1/2 ≤ C

λ1/2

T
1
2

 1/2

−1/2
|h(s)|2ds

1/2
, (8)

where if γ̃(t), |t| ≤ 1/2 is lift of unit length geodesic γ ∈ Π,

χ(T (λ−

−Δg ))(γ(t), γ(s)) = K (t, s) =



α∈Γ

Kα(t, s)

Kα(t, s) =
1

πT

 T

−T
χ̂(τ/T )e iλτ


cos τ


−Δg̃


(γ̃(t),α(γ̃(s)))dτ.

Finite sum: (potentially exp(cT ) terms!!) Since Kα = 0 if
dg̃ (D,α(D)) > T . By Hadamard parametrix:

Kα ≈ T−1λ1/2e iλdg̃ (γ̃(t),α(γ̃(s)))/(dg̃ (γ̃(t), α̃(γ(s)))
1/2 + l .o.t.

Let Tα : L2([−1/2, 1/2]) → L2([−1/2, 1/2]) integral operator with
kernel Kα. 22 / 25



Proof, continued: Stabilizers and non-Stabilizers

Clearly TIdentityL2→L2 ≤ Cλ
1
2 /T , as dg̃ (γ̃(t), γ̃(s)) = |t − s|.

Tαh = λ
1
2T−1

 1/2

−1/2
e iλφα(t,s)aα(t, s)h(s) ds, α ∕= Identity ,

smooth osc int op if φα(t, s) = dg̃ (γ̃(t),α(γ̃(s))), aα = 1/(φα)
1/2.

If γ̃ = {γ̃(t) : t ∈ R}, then α(γ̃) a geodesic (by Hadamard).

Two cases: i) α(γ̃) = γ̃, or ii) α(γ̃) ∕= γ̃

Case i): γ ∈ Π must be a unit segment of a periodic geodesic of
period ℓ, and α(γ̃(s)) = γ̃(s + kℓ) for a unique k ∈ Z. Then
α ∈ Stab(γ̃) and φα ≡ |t − s − kℓ|, so trivial oscillators but
|Kα| ≤ Ck−1/2. Thus,



α∈Stab (γ̃)

TαL2→L2 ≤ CT−1λ1/21 +


0<k≤T

|kℓ|−1/2)) ≤ Cλ1/2T−1/2.

Conclude that contribution of stabilizer group is as desired.

Suffices to show TαL2→L2 ≤ cαλ
1/4, α /∈ Stab (γ̃) (smaller

power of λ allows control of Huge Sum).
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Non-stabilizers and oscillatory integrals (finally)

Tαh = λ
1
2T−1

 1/2

−1/2
e iλφα(t,s)aα(t, s)h(s) ds, α(γ̃) ∕= γ̃,φα = dg̃ (γ̃(t), α̃(γ(s)))

By Hadamard again: either i) γ̃ and α(γ̃) are disjoint or ii) they
intersect at unique point x0(α)

By Gauss: In case i) always have ∂t∂sφα(t, s) ∕= 0 and so get
TαL2→L2 ≤ cα in this case from Hörmander’s osc integral
theorem.

By Gauss again: In case ii) also have ∂t∂sφα(t, s) ∕= 0 if both
γ̃(t),α(γ̃(s)) ∕= x0(α), while if one equals x0(α) have
|∂2

t ∂sφα(t, s)|+ |∂t∂2
s φα(t, s)| ∕= 0, and so by

oscillatory integral theorem of Greenleaf-Seeger and
Phong-Stein know TαL2→L2 ≤ cαλ

1/4.
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Period integrals (joint with Xuehua Chen)

By a similar argument, can show that if (M, g) has strictly
negative curvature and γper ∈ M is a periodic geodesic, have



γper

eλ ds = o(1), λ → ∞ (9)

Using Kuznetsov trace formulae (1980) (constant curvature),

Good (1983) and Hejhal (1982) showed above is O(1).

Zelditch (1992) also obtained O(1) bounds w/out curvature
assumptions (and much more) using microlocal analysis.

Need to assume curvature is negative. For on T2 ∼= [−π,π)2 if
eλ(x1, x2) = cosλx1, λ ∈ Z and γper = (0, t), t ∈ [−π,π), above
integral ≡ 2π.

Miracle allowing you to control oscillatory integrals arising in
proof of (9): If the curvature is negative then the sum of the
angles for quadrilaterals is strictly less than 360◦
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