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I.) Basic problems

Interested in uniform estimates of the form

‖u‖Ls(M) ≤ C‖(∆ + ζ)u‖Lr (M), u ∈ C∞0 , ζ ∈ R ⊂ C

I ∆=Laplacian on (M, g), norms taken w.r.t. volume element

I (M, g) either compact w/out boundary, or simply connected
with constant curvature (e.g., Hn)

I M compact ζ = λ+ i for appropriate C = C (λ) = λσ(r ,s)

implies bounds for eigenfunctions

I M noncompact and r = s = 2, cutoff resolvent bounds for
(∆ + ζ)−1 important in semiclassical analysis (resonances) and
sensitive to trapping of geodesics—distribution of resonances.

I Applications to control theory.

I For Lp-resolvent bounds and M compact or noncompact:
Expect estimates to be related to spectrum of ∆ and
dynamics of geodesic flow



II a.) Optimal results for Euclidean space

Suppose that

I n( 1
r − 1

s ) = 2

I and min
(
|1r − 1

2 |, |1s − 1
2 |
)
> 1

2n , (i.e., 2n
n−1 < s < 2n

n−3 )

Kenig, Ruiz, S. (’87):

If n ≥ 3 and r , s as above ∃Cr ,s so that

‖u‖Ls(Rn) ≤ Cr ,s‖(∆ + ζ)u‖Lr (Rn), ζ ∈ C, u ∈ C∞0 . (1)

Idea: If f = (∆ + ζ)u, then

u(x) = (2π)−n
∫
Rn

e ix ·ξ
f̂ (ξ)

ζ − |ξ|2 dξ,

f̂ (ξ) =

∫
Rn

e−iy ·ξf (y) dy , f (x) = (2π)−n
∫
Rn

e ix ·ξ f̂ (ξ) dξ.



II b.) Euclidean restriction estimates

Worse case: ζ = 1− iε, ε↘ 0, since

Im (1− iε− |ξ|2)−1 → π dS , (surface measure onSn−1)

So (1) implies that∥∥∫
Sn−1

e ix ·ω f̂ (ω) dS(ω)
∥∥
Ls(Rn)

≤ C‖f ‖Lr (Rn), (2)

I See that you need s > 2n
n−1 if f ∈ S with f̂ = 1 near Sn−1

I Case where s ′ = r = 2n
n−2 ⇐⇒ to special case of

Stein-Tomas:( ∫
Sn−1

|û|2 dS
) 1

2 ≤ C‖u‖Lp(Rn), 1 ≤ p ≤ 2(n + 1)

n + 3
. (3)

KRS: Can reverse argument that (1) =⇒ (2) as well.



Remarks

If dEλ, λ ∈ [0,∞) denotes the spectral measure for
√−∆Rn , then,

after rescaling, (2) is equivalent to

‖dEλ‖Lr (Rn)→Ls(Rn) = lim
ε↘0

ε−1‖1[λ,λ+ε](
√
−∆Rn)‖Lr→Ls

≤ Cλ. (4)

I Continuous spectrum of ∆Rn responsible for this as well as
resolvent Euclidean estimates (1).

I Expect different story for compact manifolds, and, there,
expect dynamics of geodesic flow and spectral properties of
∆g to dictate how close you can come to (1) and (4)

I Expect also: Resolvent bounds corresponding to high
frequencies can see spectrum and dynamics. Known to be
true in many cases for L2—also for Lp bounds.

I What about Hn?



III.) Compact manifolds: Classical Spectral Theory
In 1910 Sommerfeld, followed 3 months later by
Lorentz, gave famous lectures inspiring Weyl’s work.
Sommerfeld interested in forced vibration problem in
dimensions n = 1, 2, 3: (∆ + ζ)u(x) = f (x),
x ∈ Ω b Rn, u|∂Ω = 0
Asked how properties of solution operator (∆ + ζ)−1

related to solutions of the free vibration problem

(∆ + λ2
j )ej(x) = 0, ej |∂Ω = 0,

∫
Ω
|ej |2dx = 1

Kernel of solution operator: S(x , y) =
∑

j
ej(x)ej(y)
ζ−λ2

j

Sommerfeld reasoned that

(∆ + ζ)S(x , y) =
∑

ej(x)ej(y) is “spike function”

Also conjectured that properties of S(x , y) should be
related to distribution of eigenvalues {λj}, and
“cancellation from numerator” (oscillation of e.f.’s)



Weyl Law

Lorentz’s subsequent 1910 lecture spelled out the eigenvalue
problem more precisely and asked whether for the eigenvalues for
the Dirichlet Laplacian in smooth domains Ω ⊂ Rn one has for
N(λ) = number λj ≤ λ

N(λ) = (2π)−n(Vol B)(Vol Ω)λn + o(λn)

Hilbert: No way in my lifetime

Weyl: Yes! (several proofs in 1911-12 comparison arguments,
heat kernel, Tauberian arguments...)

Sharp Weyl formula (Avakumovic ’50s):

N(λ) = cMλ
n + O(λn−1).

Improvements over the years in many special cases with “good”
dynamics



IV.) Resolvent bounds for compact manifolds

Given a compact Riemannian manifold (M, g) of dimension n ≥ 3,
interested in regions R(g) for which one can have uniform
resolvent estimates:

‖u‖
L

2n
n−2 (M)

≤ C‖(∆g + ζ)u‖
L

2n
n+2 (M)

, ζ ∈ R(g), u ∈ C∞.

Z. Shen (2001): For the torus Tn = Rn/Zn can take region to be

{ζ ∈ C : Re ζ ≤ (Im ζ)2, |ζ| ≥ 1}

Dos Santos Ferreira, Kenig and Salo [DKS] (2011): Same
results for any compact Riemannian manifold



Problem raised by DKS for (∆g + ζ)−1 : L
2n
n+2 → L

2n
n−2

Does the DKS-S theorem hold for a larger region, specifically the
region outside the curve γopt , which is |Im ζ| = 1 (unit distance
from spectrum of −∆g )?
This would be natural Riemannian version of KRS results for Rn.

γopt

γDKSS



V.) Weyl law & answer (w Bourgain, Shao & Yao [BSSY])

The answer is NO: In some cases cannot come close to γopt and
earlier bounds of DKS in fact cannot be improved:
Write ζ = (λ+ iε(λ))2 = λ2 + 2iελ− ε2.

Then ε(λ) = 1 corresponds to γDKSS curve. (BSSY): If

(∆ + (λ+ iε(λ))2)−1 : L
2n
n+2 → L

2n
n−2 uniformly, then

#{λj : λj ∈ [λ− ε(λ), λ+ ε(λ)]}
≤ Vol {ξ ∈ Rn : |ξ| ∈ [λ− ε(λ), λ+ ε(λ)]} . ε(λ)λn−1

= Volume of ε(λ)− annulus about λSn−1.

Cannot hold if ε(λ)↘ 0 for Sn as distinct eigenvalues are
λ =

√
k(k + n − 1), repeating with multiplicity ≈ λn−1.

γopt corresponds to e(λ) = λ−1. DIFFICULT!!

Sommerfeld correct: Resolvent operators sensitive to spectral
properties of ∆g



Some cases of nonclustering spectrum

Some manifolds (M, g) where it is known that ∃ ε(λ)↘ 0 so that

#{λj : |λj − λ| ≤ ε(λ)} = O(ε(λ)λn−1),

which implies the above nonclustering condition for Lp-resolvent
bounds.
Specifically:

I Manifolds of nonpositive curvature (Bérard ’78):
ε(λ) = 1/ log λ

I Standard n-torus, Tn (Hlawka ’50): ε(λ) = λ−σn ,
σn = −1 + 2

n+1

I Duistermaat-Guillemin (&Ivrii) (’75) ε(λ) = o(1) if (M, g)
has zero measure of periodic geodesics (is a generic condition).



BSSY: Improvements of DKS-S in first two cases

Unlike the situation for the n-sphere, we can improve the earlier
estimates of DKSS somewhat for i) manifolds of nonpositive
curvature, and a bit more for ii) Tn:

γTn

γSn

γopt

γneg

Figure : Various regions R(M, g) for (∆g + ζ)−1



Improved bounds for numerator in Sommerfeld-Green fnct

Theorem (BSSY):

‖u‖
L

2n
n−2 (M)

≤ C
∥∥(∆g + (λ+ iε(λ))2)u

∥∥
L

2n
n+2 (M)

, (5)

if and only if∥∥ ∑
|λ−λj |≤ε(λ)

Ej f
∥∥
L

2n
n−2 (M)

≤ Cλε(λ)‖f ‖
L

2n
n+2 (M)

. (6)

I Ej f =< f , ej > ej(x) projection of f onto j-th eigenspace. So
above operator is proj of f onto ε(λ)-spectral band about λ.

I CS (’88) earlier proved this estimate with ε(λ) = 1 (sharp for
sphere).

I Natural variant of (4), ie., Euclidean Lr → Ls , s ′ = r bounds
for

1[λ,λ+ε(λ)](
√
−∆Rn)g =

∫
{ξ∈Rn: | |ξ|−λ|≤ε(λ)}

e ix ·ξ ĝ(ξ) dξ



Spectral projection bds =⇒ resolvent bds

Use the following variant of F.t. of Poisson summation kernel: If
P =

√
−∆g , ζ = (λ+ iµ)2,

(
∆g + (λ+ iµ)2

)−1
=

sgn µ

i(λ+ iµ)

∫ ∞
0

e i(sgn µ)λte−|µ|t (cos tP) dt

= ...

∫ ∞
0

β(t)...dt + ...

∫ ∞
0

(1− β(t))...dt,

with C∞0 3 β = 1 near origin.

I If β small support, 1st term uniformly bounded for all ζ (local
piece). Use Hadamard parametrix and Stein’s osc int theorem.

I 2nd term is multiplier operator mλ,µ(P) with

mλ,µ(τ) = O((1 + |λ− τ |)−N) +O(|µ|−1(1 + |µ|−1|λ− τ |)−N)

and so can use old unit-band and improved µ = ε(λ)-band
bonds (and reverse TT ∗ argument) to handle it.



Improved spectral projection bounds of BSSY

Have ∥∥ ∑
|λ−λj |≤ε(λ)

Ej f
∥∥
L

2n
n−2 (M)

≤ Cλε(λ)‖f ‖
L

2n
n+2 (M)

.

with
I ε(λ) = 1/ log λ if (M, g) has nonpositive curvature.

I For Tn if ε(λ) = λ−σn with

σn =


85

252 ≈ 0.337, n = 3

2(n−1)
n2+2n−2

, n ≥ 4, even

2(n−1)
n(n+1) , n ≥ 5, odd.

I Tools: For Tn use Poisson summation formula and recent
harmonic techniques developed by Bennett-Carbery-Tao,
Bourgain-Guth...
For nonpos curv use Cartan-Hadamard thm to lift calculation
up to universal cover & variant of Poisson summation



Results w/Shanglin Huang for hyperbolic space

Rn w/ metric of const curv −κ, κ > 0: In geod polar coords

∆−κ = ∂2
r + (n − 1)

√
κ coth(

√
κr)∂r + (

√
κ csch(

√
κr)2∆Sn−1 ,

dV−κ =
(sinh

√
κr√

κ

)n−1
drdθ, 0 < r <∞, −κ < 0,

Theorem
Let n ≥ 3. Then for every r , s as above ∃Cr ,s so that (−κ = −1) if
u ∈ C∞0

‖u‖Ls(Hn,dVHn ) ≤ Cr ,s

∥∥((∆Hn + (n−1
2 )2) + ζ

)
u
∥∥
Lr (Hn,dVHn )

, |ζ| ≥ 1.

Also, have uniform bounds (indep of −κ < 0)

‖u‖Ls(Rn,dV−k ) ≤ Cr ,s

∥∥((∆−κ+κ(n−1
2 )2)+ζ

)
u
∥∥
Lr (Rn,dV−κ)

, |ζ| ≥ κ.

Letting κ→ 0+ recover Euclidean estimates of KRS.



Proof of resolvent estimates for constant neg curv

Use that for the shifted Laplacians −∆−κ − κ(n−1
2 )2 (having

spectrum [0,∞)), have the following variants of Euclidean

estimates (4) for
√
−∆−κ − κ(n−1

2 )2:∥∥1[λ,λ+ε](Pκ)
∥∥
Lr (dV−κ→Ls(dV−κ)

≤ Cελ, λ ≥ κ. (7)

The condition that the spectral parameter be ≥ κ not necessary
for n = 3.
You prove this using Stein’s analytic interpolation argument used
to prove Stein-Tomas and explicit formulae for functions of Pκ
(coming from explicit formulae for fund solution of wave operators)

Use (7) to deal with large frequencies λ in spectral decomposition
of resolvent operators

For low freq: Very handy to use Sobolev estimates for unshifted
Laplacian: (−∆Hn)α/2 : Lp(α)(Hn)→ Lq(α)(Hn) (exponents as in
Rn) from Cowling-Giulini-Meda (‘93)



Constant positive curvature: round spheres

Also can prove continuous family of uniform estimates for spheres
of constant curvature κ > 0 that imply the KRS estimates.

Rκ, 0 < κ� 1

R

Re ζ

Im ζ

Do this by proving uniform Lr → Ls bounds for proj onto spherical
harmonics of degree k . Recover Rn bounds by letting κ→ 0+

Need ‖Hk‖Lr (Sn)→Ls(Sn) (proj onto spherical harmonics of deg k .)

For this, need to strengthen classical Darboux formula for
asymptotics of projection kernel (i.e., “zonal functions” on Sn)

Use periodicity of wave group t → e it
√
−∆Sn+(

n−1
2 )2

.


	Lp(M) estimates and L2 concentration on geodesics

